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Abstract: The development of policy interventions to enhance the sustainability of our future often 
depends on the capacity to understand and model relevant social systems and to predict the consequences of 
policy change.  To this end, we describe in this paper a suite of statistical models for the structure and 
dynamics of network-based social systems.   In these models, global network structure is hypothesised to 
arise as the outcome of dynamic, interactive processes occurring within local neighbourhoods of a network. 
 A hierarchy of such processes and model specifications are described.  Models can be estimated from a 
number of possible data structures, including single or panel observations, and partial data structures obtained 
through certain types of network sampling schemes. 

Using several illustrative applications, we describe how the models can be used to extend our understanding 
of social systems and build theoretically plausible and empirically-grounded simulation models.  Advantages 
of the approach include a capacity to quantify uncertainty and its implications, and the facility to assess the 
extent to which a model captures features of the social system not parameterized in the model. 
 
We conclude with a sketch of future work designed to improve our understanding of ways to enhance 
sustainability within network-based social systems. 
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1. INTRODUCTION 

As many commentators are increasingly aware, the design of effective policy interventions can often depend 
on an understanding of the interactive, dynamic and socially-situated processes from which complex social 
systems derive their properties.   By dynamic and interactive, we mean that the actions of one individual in a 
social system may both depend on and, in turn, influence the actions of others.  By socially-situated, we 
mean that actions depend on a multi-layered complex of social entities that includes social relations, group 
affiliations, social settings and spatial neighbourhoods.  These aspects of social “location” both constrain and 
provide opportunities for possible future actions.  Further, an action by one individual may change the 
context for other individuals in neighbouring locations, so that a dynamic, interactive characterisation of 
social processes necessarily implicates an understanding of social location.   

Social networks can play a particularly important role in these processes.  Different types of networks serve 
as channels through which, for example, knowledge is diffused, opportunities are recognised, influence is 
exerted, support is offered, stereotypes are formed, and actions are coordinated.  Yet this simple insight 
reflects the inherent complexity of social systems: the macro-level behaviour of a social system is critically 
dependent on the precise nature of self-organising network-based social processes occurring at local levels of 
interaction.  In order to understand such social systems, we need a more precise appreciation of the nature of 
these local interactions and of the ways in which they cumulate to determine system-level properties. Indeed, 
a fuller recognition of the interdependent nature of social processes brings with it a quantitative imperative: 
relatively precise characterisations of local interactive processes are generally required in order to understand 
their implications at an aggregate or global system level.    

This paper outlines a systematic suite of statistical models that allow us to explicate and understand these 
interactive local network-based processes and their system-level consequences.  The models can be estimated 
from appropriate data on the system of interest, and provide theoretically principled and empirically 
defensible accounts of network structures, network-based social processes and network dynamics.  They have 
been shown to be capable of reproducing a variety of important local and global features of such systems, 
including properties of social networks (e.g., Snijders et al., 2006; Robins et al., 2007; Goodreau, 2007), the 
distribution of individual characteristics across networks (Robins et al., 1999), and changes in network 
structure over time (Snijders and Koskinen, in press).  In addition, it is possible to embed models for these 
network-based interactive processes within geographical space and within higher-level social settings (e.g. 
Daraganova et al., in press; Wang et al., 2011).   

The development of this suite of models has been enabled by four important and interrelated developments:  

• a principled approach to quantitative model specification for emergent higher order relational 
structures (Pattison and Robins, 2002; Snijders et al., 2006; Pattison et al., 2011a);  

• compelling evidence that models for observed social networks typically require the inclusion of 
such emergent higher order effects (Robins et al., 2007; Snijders et al., 2006);  

• a capacity to construe models for cross-sectional observations as equilibrium models for dynamic 
processes for the evolution and co-evolution of networks and network processes and to estimate 
dynamic models from longitudinal observations of networks and relevant node-level characteristics 
(e.g., Snijders, 2001; Snijders and Koskinen, in press; Steglich et al., in press); 

• application of Markov Chain Monte Carlo Maximum Likelihood Estimation (MCMCMLE) methods 
and their extension to adaptive sampling designs and designs with data missing at random (Snijders, 
2002; Handcock and Gile, 2010; Hunter and Handcock, 2004; Koskinen et al., 2010; Pattison et al., 
2011b).   

2. MODELLING FRAMEWORK 

We outline the modelling framework by describing three types of data structure and a general model form 
associated with each.  These three approaches can then be combined to model more complex structures.   

2.1. Models for Social Networks  

The first data structure is a (social) network, defined on a fixed set N = {1,2,…,n} of social actors, or nodes, 
who are assumed to be linked by various forms of relational tie.  A potential tie between two nodes, i and j, is 
regarded as a discrete random variable (Xij = 1 if the tie is observed, Xij = 0, otherwise).  If Xij and Xji are (not) 
distinguished, the ties are (non-)directed.  A random network (or random graph) is represented by a two-way 
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array X = [Xij] of these random variables; x = [xij] denotes a particular set of realised values.  The models can 
be generalised to discrete-valued observations and multiple types of tie (Frank and Strauss; 1986; Pattison 
and Wasserman, 1999; Wasserman and Pattison, 1996; Robins et al., 1999; Robins et al, 2009).  

Two variables are termed neighbours if they are assumed to be conditionally dependent given the values of 
all other variables.  Neighbourhood relations can be represented by a dependence graph D whose nodes are 
the random variables Xij and whose edges link pairs of neighbouring variables.  The Hammersley-Clifford 
theorem (Besag, 1974) can then be applied to any hypothesis about the neighbourhood structure to determine 
the general parametric form for a probability model, Pr(X = x).  Non-zero parameters pertain to subsets A of 
variables for which every pair of variables are neighbours; these subsets are termed local neighbourhoods 
(Pattison and Robins, 2002).  Specifically:  

Pr(X = x) = exp(ΣA λAzA(x))/κ       (1) 

where: 

• A is a local neighbourhood defining a configuration of possible ties;  

• λA is a parameter associated with the neighbourhood A;  

• the quantity zA(x) is a relational statistic indicating whether all ties in A are present in x;  

• and κ is a normalizing quantity. 

Given many overlapping neighbourhoods A, the model expresses the probability of a network as a function of 
self-organising processes in local regions of the network.  In homogeneous models, parameters for 
isomorphic configurations are equated; a positive value of λA then indicates that networks with more 
configurations of type A are more probable.   

Equation (1) is the general form of an exponential random graph model (ERGM) for social networks. The 
attraction of models of this form is that, unlike many alternatives, they can incorporate important features of 
observed social networks such as clustering (the tendency for two actors sharing a tie to a third party to 
themselves be tied) and dispersion in the degree distribution (the distribution of the number of network 
partners across nodes in the network).  A critical step is to specify the dependence structure, since the 
neighbourhood relation determines the form of network configurations in the model.  

The simplest topology assumes that possible ties are independent and occur with constant probability, as in 
the Bernoulli graph model (Erdös and Renyi, 1959). The implausibility of this assumption for social systems 
led Frank and Strauss (1986) to propose Markov random graph models, whereby Xij and Xlm are assumed to 
be neighbours when they share a node ({i,j} ∩{l,m} ≠ ∅).  Pattison and Robins (2002) argued that Markov 
models were simplistic, and this has since been confirmed by the difficulty in obtaining convergent 
MCMCMLE estimates for actual network data (Handcock, 2003; Snijders, 2002; Snijders et al., 2006).  
Pattison and Robins (2002) introduced higher order processes hypothesised to influence network topologies.  
They argued that neighbourhoods may recursively emerge from the network processes themselves, with new 
neighbourhoods created as network ties are generated.  For instance, Xij and Xkl might become neighbours if 
there is an observed tie between j and k or between l and i; such assumptions lead to a class of realisation-
dependent network models (Baddeley and Möller, 1989).  Snijders et al. (2006) utilised a realisation-
dependent topology in which Xij and Xkl become neighbours only if there is an observed tie between j and k 
and between l and i.   This assumption gives rise to various higher-order neighbourhoods, the most important 
being k-triangles (a configuration of k triangles each sharing a common base).  The resulting higher order 
models fit dramatically better than Markov models and suggest the importance of realisation-dependent 
model forms. 

More recently, Pattison et al. (2011b) have described a systematic framework for characterising the 
dependence assumptions that may underlie ERGM model specifications and hence for also classifying their 
associated network effects.  They observed that the various dependence assumptions for a pair of tie variables 
Xij and Xkl that have been proposed to date may be differentiated according to the form of proximity among 
the two node pairs and the distance in terms of which proximity is judged.  These two features serve to 
characterise the graph-theoretical proximity of the two node pairs {i,j} and {k,l} for which the tie variables 
Xij and Xkl are assumed to be conditionally dependent.  Pattison et al. (2011b) show that the resulting 
hierarchy of models can be used to capture network effects that reflect the degree to which networks exhibit 
structural patterns associated with cohesion, closure or exchange, brokerage and connectivity.  As a result, 
ERGMs provides a very broad framework for building effective models for social networks.    
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A further generalization of the model arises when relational variables are conceptualized as links or contacts 
from a set of social actors to a set of organisations.  In this case, a potential contact tie Xik between an 
individual i and an organisation k is regarded as a discrete random variable, with value 1 if the individual is 
in the organisation and 0 otherwise.  X =[Xik] is then a random bipartite network.  Wang et al. (2009) 
described models for a bipartite version of the social circuit hypothesis; and Wang et al. (2011) have 
extended these models to more complex data and model forms in ways associated with the dependence 
hierarchy described above. 

2.2. Exogenous Covariates 

The second data structure of interest is one in which observations of a network are accompanied by observed 
exogenous characteristics of the nodes (or possibly pairs of nodes) of the network.  Exogenous variables may 
be assumed to affect network variables and so interact with network effects in ways determined from an 
extended dependence graph incorporating directed dependencies. As Robins et al. (2001) demonstrated, the 
addition of exogenous covariates leads to models of the form:  

Pr(X = x⏐Y = y) = exp(ΣQΣPλP,Q zP(x)wQ(y))/κ                 (2) 

where Y denotes a collection of (often node-level) covariate variables, and y a corresponding array of 
observations; the summation is over all subsets P of interdependent tie variables, and over all subsets Q of 
covariate variables hypothesised to affect each variable in P; λP,Q is a parameter associated with the subsets P 
and Q; zP(x) and wQ(y) are statistics associated with P and Q (taken to have the value 1 if P or Q are empty); 
and κ is a normalizing quantity. 

Reversing the role of Y and X in model (2) leads to models for the outcome of network-based processes, such 
as social influence and network-based diffusion processes (Robins et al., 2001).  These models then reflect 
processes in which the course and outcome of interpersonal interactions depend on network structures.  For 
example, they can capture the outcome of a variety of interpersonal encounters in which a social product of 
some form (e.g., knowledge, attitude, commodity or pathogen) is transmitted from one person to another.   

2.3. Dynamic Models 

The third important data structure comprises longitudinal, or panel, observations of a network.  The basic 
framework of equation (1) can then be generalised to model network evolution. Suppose the relational 
variables Xij(t) are now time-dependent and that, at any time t, there is a possible change in status for some 
randomly chosen tie, Xij (i.e. from 0 to 1, or 1 to 0).  Suppose also that the network changes with transition 
rate ρlogistic(ΣP λP(zP(x*

ij(t)) - zP(x(t)))), where: x(t) denotes the state of the network at time t;  x*
ij(t) equals 

x(t) but with the value of Xij(t) changed from xij(t) to 1-xij(t); ρ is a rate parameter and the logistic function is 
defined by logistic(z)=exp(z)/(1+exp(z)).   

This stationary continuous-time Markov process converges to the distribution of equation (1) and is an 
adaptation of the approach of Snijders (2001), who was the first to develop continuous-time Markov chain 
models for network evolution that relax the implausible assumption of dyad-independence. Snijders and 
Koskinen (in press) describe how to estimate parameters for this model from longitudinal investigations on a 
network.   

Longitudinal models can also be developed for cross-level interactions.  When cross-level interactions 
involve individual and tie variables, these models instantiate both social selection and social influence 
processes in which, respectively, changes in tie status depend on characteristics of the actors involved, and 
actor characteristics change in response to characteristics of their tie partners.  As noted in 2.2 above, 
separate selection and influence models have been developed from equation (1), but in reality influence and 
selection processes are likely to occur simultaneously.  The co-evolution model of Snijders and colleagues 
(e.g. see Steglich et al., in press) provides a means of disentangling selection and influence effects through 
analysis of longitudinal observations. 

2.4. Network Sampling and Missing Data 

Where social systems are large, the task of obtaining data on whether each pair of actors is linked by a tie can 
be a daunting and expensive one.  It is therefore of interest to develop means of estimating models such as 
equation (1) from suitable sampling schemes.  For example, the technique of snowball sampling was devised 
in the 1940s by the sociologist Paul Lazarsfeld to observe parts of a network that might be important to social 
influence processes (Barton, 2001).   Recent methodological developments have included a likelihood based 
method for estimating the model of equation (1) in the case of network sampling schemes and data that is 
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missing at random (Handcock and Gile, 2010; Koskinen et al., 2010); a conditional estimation approach has 
also been developed specifically for snowball sampling designs (Pattison et al., 2011b).   

2.5. Modelling Complex Social Systems  

Putting together the approaches just described yields a capacity to build models for social systems with 
multiple types of social actors (e.g. individuals, groups, organisations of different kinds), each of which 
might have a variety of different types of characteristics, and amongst whom there are a number of potential 
connections of different types.  Models can be built that are not only theoretically informed but also 
described by parameters estimated from data.  In some cases, models can even be estimated where only 
partial observations have been made of the set of variables that constitute the system.  Moreover, if we 
observe the system on multiple occasions and so have access to longitudinal observations, we can specify a 
continuous-time Markov process with parameters that can also be estimated from data, and whose 
equilibrium form has the same structure as models estimated from cross-sectional observations.  
 
Together, these capacities allow us to use data to build models for social systems that have a number of 
advantages, many of which accrue from the general statistical framework within which the modelling 
approach is set.  In particular: 

• we can estimate the uncertainty of parameters, and use this information to simulate possible states of 
the system in a way that takes account of uncertainty (e.g. Snijders et al., 2006; Wang et al., 2009); 

• we can simulate the social system, and compare the properties of simulated states of the system with 
observed data, providing the means to assess how well the model captures features of the system 
that are not directly parameterised in the model (e.g., Hunter et al., 2008); 

• if we make longitudinal observations of the system, we can model the evolutionary and co-
evolutionary processes more directly, and hence assess the degree to which such processes are 
captured by cross-sectional models (Snijders and Koskinen, in press);  

• provided that the model does a sufficiently good job of capturing aspects of the system which we 
believe to be important, we can use it as a baseline representation of the system for various forms of 
scenario modeling. 

3. ILLUSTRATIVE APPLICATIONS 

In this section, we briefly describe several case studies which illustrate the ways in which the models and 
their extensions described above can be applied to understand social systems, and to serve as scenario testing 
models. 

3.1. Environmental Governance  

Robins et al. (in press) analysed networks of ties among organisations involved in management of the Swan 
River in Western Australia.  The relevant data comprised relations among 21 organisations charged with 
primary collective responsibility for river management through a 2004 framework for collective management 
known as Riverplan (W. A. Government, 2004).  The relational data were reported by key organisational 
informants who judged the importance and ease of collaboration of their ties to other organisations that were 
relevant to a specified set of responsibilities in relation to river management.  Robins et al. (in press) argued 
that effective network governance required a number of structural preconditions, including network 
structures that can facilitate effective coordination of action, such as relational and structural embeddedness 
and agreement among network actors about goals and actions. They demonstrated through their analysis of 
the observed governance network for the Swan River that these preconditions were not in fact met and that, 
in particular, the system did not exhibit relational and structural embeddedness among constituent 
organisations, and relations judged to be crucial involved significant levels of contestation.  They concluded 
that organisations making up the governance system appeared to be pursuing different goals. Legislative 
changes for environmental governance of the river have since been made, the need for which was supported 
by the empirical analysis reported in Robins et al. (in press). 

3.2. Diffusion of Sustainable Farming Practices 

Lusher et al. (2010) used a snowball sampling design in rural regions in New South Wales and Western 
Australia to identify farmers’ networks of advice and approaches to sustainable farming practices.  Beginning 
with a random sample of farmers in each selected district, they asked farmers to identify sources of advice, 
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and then recruited the identified individuals into the sample.  This process was repeated several times.  The 
resulting data constitutes a partial observation of the system of interest, and Lusher et al. (2010) used the 
conditional estimation approach described earlier to model the distribution of sustainable farming practices as 
a function of the measured advice network (e.g. Daraganova and Pattison, 2011).  Lusher et al. (2010) were 
able to identify interactions between the distribution of sustainable practices and the advice network, and 
hence formulate valuable hypotheses for exploration in future longitudinal studies.  

4. DISCUSSION AND CONCLUSIONS 

The two examples in Section 3 illustrate the use of cross-sectional designs to study components of a larger 
social system that are relevant to sustainability.  Such designs are valuable as they inform our detailed 
understanding of the behavior of important social sub-systems.  Yet, ideally we need to explore the processes 
by which various components of such sub-systems interact, and verify the interactions through multiple 
observations of the system.  As a result, longitudinal, multi-level designs are likely to yield particularly 
valuable insights.   

4.1. Climate Adaptation in Multi-level Governance Environments 

With such goals in mind, Robins et al. (2010) have analysed research designs that are likely to be most 
valuable in enhancing our understanding of the acceptance, adoption and diffusion of adaptive behaviours.  
They propose as key components of such a study: regional organisations, including local government; the 
adaptive capacity of these organisations; the organisational affiliations of individuals within regions; and 
attitudes and behavioural adaptation at the individual level. Although the studies they recommend are yet to 
be conducted, they hold substantial promise for the development of scenario models that can then be used to 
predict the impact of policy interventions proposed to enhance sustainability.      
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