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Abstract: To explore the significance of alternative model structures and their inadequacies, hydrological
modeling frameworks that allow quick implementation and comparison of alternative structures were
already developed, mostly in a lumped mode. These systems allow testing the suitability of different
model components and combining them in a modular fashion. Components can be modified or added if
none of the available components fulfils the problem-specific requirements. It is, however, important to
highlight that there is no general superior model structure for all spatial resolutions used. So, combining
this flexible handling of structural components with varying the spatial resolution is necessary to adapt
the model building process to specific conditions of the system, the available data and the objectives of
the study.

The next important step is to define effective strategies to diagnose and compare competitive model struc-
tures. Only then one can propose model structure improvements. There are several approaches described
in the literature that help model diagnosis, like sensitivity analysis, parameter optimisation and uncer-
tainty analysis, but these are mostly used to evaluate one specific structure or compare only a limited
number of different structures and are typically not used in conjunction, but rather individually. By
changing either specific processes or spatial resolution, while fixing the remainder of the model struc-
ture, rigorous testing of the model structure is possible, by addressing the effect of individual model
components or spatial resolution.

We present a tool to diagnose alternative model structures and address the effect of individual model com-
ponents. The tool allows improving the evaluation and selection process of appropriate model structures
out of the possible combinations coming from these flexible model structures to ensure the model rep-
resents the dominant processes of the system with the required rigour. The presented strategy uses both
uncertainty and sensitivity analysis in a Monte-Carlo based framework. Regional sensitivity analysis al-
lows identifying and comparing critical parameters among the different structures for different objective
functions. Uncertainty analysis quantifies output uncertainty and parameter identifiability for different
likelihood functions among the different structures. Comparing the posterior distribution of the param-
eters with the initial sampled distribution defines how these are conditioned by the model evaluation
process. Since working with flexible structures, analysis can be done on both common and non-common
components and associated parameters of the different model structures in a lumped or distributed mode.

Structural components can be changed one at a time or a predefined set of model structures can be com-
pared, using the combination of the above mentioned techniques. Selection criteria are assessed and
linked to specific objectives (looking to specific flow regimes, specific objective functions or adapted
metrics like flow duration curves). Moreover, it expresses the significant effect of the selected objec-
tive function(s) and the importance of using multiple evaluation criteria supporting the research question
instead of only trying to reproduce the observed hydrograph.
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1 INTRODUCTION

Different model formulations and spatial conceptualisations can be selected to model hydrological sys-
tems. Over the past two to three decades, this resulted in a wide variety of model structures for analyzing
the properties and behaviour of such systems. Roughly, this variety is characterised by different levels of
spatial detail and process complexity. A trade-off exists between the required level of complexity and res-
olution, the accepted level of uncertainty, the data-availability and the performance of the overall model.
A suboptimal model structure will lead to parameter identifiability problems, increasing uncertainty and
significantly reduced model predictive power. As a result, the choice of a model with respect to the ap-
propriate complexity and spatial detail is not straightforward or transparent and is to a large extent driven
by the objective of the modeling exercise.

Despite the high variety in complexity in developed models, the majority of hydrological model structures
applied in current research are conceptual models, with a fixed structure based on a certain understanding
of the dominant processes in the system (Wagener et al., 2001). These conceptual models commonly
consist of a number of soil water reservoirs and routing routines representing various runoff processes.
As parameter values can not be related to physical or measurable properties, observed data is necessary
to inversely identify the parameter values.

Yet, different combinations of parameters and model structures yield similar results in terms of a defined
objective function (Beven and Binley, 1992). This lack of identifiability is expressed as ’equifinality’,
accepting the existence of multiple behavioral parameter sets and model structures. This affects the
quantification of the uncertainty, as Krueger et al. (2010) expresses that focusing on a single model
structure is likely to result in modeling bias and underestimation of model uncertainty. Identifying the
most appropriate model structure for a given problem and quantifying the uncertainty is therefore more
than fitting the parameters of a fixed model structure to an observed hydrograph. It is an iterative learning
process of rejecting unbehavioural model structures (Fenicia et al., 2008), based on a combination of
diagnostics (Gupta et al., 2008). Wagener and Wheater (1999) define an appropriate model structure as
a function of the modeling objectives, the characteristics of the hydrological system under investigation
and the available data.

Since determining a priori which conceptual model structure is most appropriate for a given situation
remains a challenging problem in hydrology (Clark et al., 2008) and recognising that no model structure is
suitable for all modeling tasks, using an adaptable and flexible model structure framework in conjunction
with a decision framework is preferable. Rather than attempting to find one general model structure
capable to perform well over widely differing characteristics (Andréassian et al., 2009; Linsley, 1982;
Sten, 1990), it gives the possibility to adapt the model structure to the specific conditions and research
questions. Still, the focus is not to generate an extensive number of model structures, but rather to assist
the expert in retrieving the information necessary to discriminate between concurrent model structures,
each representing a hypothesis of the underlying processes. To take previously mentioned uncertainty
and identifiability issues into account, this paper presents a framework to compose a set of lumped or
distributed conceptual model structures and evaluate them in a sensitivity and uncertainty framework.

2 FLEXIBLE MODEL STRUCTURE

Modular modeling approaches allow to create environmental models from basic components (Argent,
2005), which makes composing model structures less time-intensitive. Modular approaches to design
model structures exists to construct hydrological models (Leavesley et al., 2002; Clark et al., 2008; Wa-
gener and Wheater, 1999), but also for ecosystem and ecological modeling (Voinov et al., 2004; Villa,
2001), wastewater simulation (Vanhooren et al., 2003) and general spatial models (Argent, 2005; Wes-
seling et al., 1996). The construction of these models can be done with an explicit coupling framework
connecting components in an user interface (Vanhooren et al., 2003), which increases user accessibility.
Although, it is also done by a model language approach (Wesseling et al., 1996; Kraft et al., 2010), where
functions and building blocks are represented by coded definitions. The latter approach of using scripting
tools got the advantage of being easily extended and at the same time it can be used as a ’glue’ to external
models or components (Kraft et al., 2010).

In hydrology, the model structures that can be implemented in most flexible model environments like in
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Figure 1. Simplified general outlay of (A.) Lumped hydrological model and (B.) Distributed grid-based
hydrological model

Wagener and Wheater (1999) are spatially lumped representations and can be summarized by the combi-
nation of a soil moisture accounting module and a routing module (Figure 1 A), where different options
can be selected for both parts. Bai et al. (2009) uses a modular modeling structure of three modules: Soil
moisture accounting, actual evapotranspiration and routing, with different options for the three compo-
nents. The Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008) combines mod-
eling options from well-known hydrological models to build up new equally plausible model structures,
where the model components can be evaluated in isolation.

When only focusing on the dominant processes representing the system (parsimonious modeling), lumped
models are prefered. Nevertheless, distributed models are taking advantage of spatially distributed forcing
of the routing and transport processes (Tang et al., 2007) (Figure 1 B) and therefore can be useful, if suf-
ficient data is available, despite their potential for overparameterization. Spatial development of flexible
model structures need a computational system that couples and coordinates modules in a simulation to-
gether with a GIS tool to perform the spatial analysis within the simulation environment. Wesseling et al.
(1996) developed the dynamical modeling language PCRaster, which can be used to construct spatio-
temporal models and can be called from the Python programming language, which provides a powerful
and flexible environment for creating different model structures.

3 DIAGNOSING MODEL STRUCTURE

Flexible model structures with interchangeable components give the opportunity to easily construct dif-
ferent model structures. To really get the benefit from this approach, effective strategies to diagnose and
compare these model structures in terms of performance, uncertainty, identifiability and complexity are
necessary. Bai et al. (2009) use an ensemble of 4 signatures, representing different timescales, in a fuzzy
evaluation scheme to select model structures and assess the necessary level of complexity. Clark et al.
(2008) use the Shuffled Complex Evolution optimization algorithm (SCE) to test if all model stuctures
perform equally well if provided with an optimal parameter set. Lee et al. (2005) are using the distance
between the optimal values of two objective functions as an evaluation of how a model structure can
simultaneously meet two different modeling objectives. The Monte-Carlo Analysis Toolbox (MCAT)
(Wagener and Wheater, 1999) includes a number of analysis methods to evaluate the results of Monte
Carlo parameter sampling experiments or model optimisation methods. Vache and McDonnell (2006) are
using a rejectionist framework to evaluate model structures using residence time data.

In general, methods are mostly based on an exploration of the parameter spaces coming from the different
structures. Further, multiple measures giving objective guidance as to whether a selected structure is
suitable or not need to be defined (Wagener et al., 2003) to reject inadequate model structures. The
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view of rejecting models that are non-behaviourable is also the idea behind the Generalised Likelihood
Uncertainty Estimation (GLUE) method introduced by Beven and Binley (1992), based on the Regional
Sensitivity Analysis (RSA) Spear and Hornberger (1980) and applied in this framework.

3.1 Regional Sensitivity Analysis (RSA) and Generalised Likelihood Uncertainty Analysis
(GLUE)

Regional Sensitivity Analysis (RSA) is a simple, qualitative way to estimate the model sensitivity based
on Monte Carlo simulations. Sets of parameters are decomposed in a behavioural group and a non-
behavioural group. Frequencies of occurrence of the parameter values are accumulated for both groups
of parameter sets separately and plotted against the parameter values. The difference between both dis-
tributions reflects the impact of the parameter, defining a sensitive parameter as a parameter introducing
a large difference between the distributions. Freer et al. (1996) extended this by dividing the behavioural
parameter sets into 10 equally sized groups based on a sorted model performance measure and compar-
ing the cumulative distributions of these ten sampled sub-ranges. To interpret the qualitative sensitivity of
the parameter to a specific performance measure, the degree of dispersion of the ten lines represents the
sensitivity of the parameter. Figure 2 shows an output for a sensitive (2(a)) and an insensitive parameter
(2(b)), represented by the spread of the different distributions.

(a) Sensitive Parameter (b) Insensitive Parameter

Figure 2. Typical output of a Regional Sensitivity Analysis. A parameter is considered more sensitive
towards a model performance measure when the cumulative distribution functions of the sampled sub-
ranges vary more.

The Generalised Likelihood Uncertainty Analysis (GLUE) is well described in Beven and Binley (1992)
and Beven and Freer (2001) and is responding to the principle of equifinality, saying that different model
parameterizations and model structures can give similar good model results. The methodology basi-
cally selects behavioural models based on a predefined likelihood measure and uses the output of these
behavioural models to assess the uncertainty.

The method is applicable to both model parameterizations and model structures, however most applica-
tions in literature are only focusing on differences in parameterizations. In the presented framework, the
use of different model structures is integrated in the workflow. Besides the use of combining all these
structures to asses the output uncertainty of the ensemble of structure as done by Krueger et al. (2010),
information can also be extracted from the rejected and accepted structures and the effect of individual
components can be assessed.

3.2 Objective Functions and evaluation metrics

The importance of using multiple criteria is stressed in Gupta et al. (1998), as it better explores the infor-
mation contained in the data. When just using one objective function, like Nash-sutcliffe efficiency, only
a general agreement between the modelled output and the measurements is verified. A combination of
different measures of information supporting the research question is preferable. Different objective func-
tions can be combined in a multi-objective calibration approach (Efstratiadis and Koutsoyiannis, 2010),
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Figure 3. Simplified general schematic of the general model structure diagnosing framework.

but also evaluation criteria coming from auxiliary data (Vache and McDonnell, 2006), identifiability of
the parameters (Wagener and Kollat, 2007), temporal clustering (de Vos et al., 2010), evaluation of dif-
ferent periods of the hydrograph (Wagener et al., 2001) or from subflow filtering (Willems, 2009) can
be used. One must take into account that effective testing requires data of a sufficient long period to
prevent acceptance of inadequate models (Linsley, 1982). While it is accepted that no model structure is
suitable for all tasks, the evaluation of model structures is mostly a trade-off and is highly dependent of
the research question. The presented framework supports the user in selecting a set of evaluation criteria
and verifing the performance of the different model structures to these criteria.

4 FRAMEWORK LAYOUT AND METHODOLOGY

The presented framework implemented in Python programming language provides a set of tools to de-
velop model structures and diagnose structural differences. It consists out of a model structural develop-
ment section and an analysing section as presented in Figure 3. Both can also be used independently, so
analyzing external models as well as extending the framework with other evaluating methods is possible.

An ensemble of model structures can be created by combining predefined coded model components, us-
ing PCRasterPython for the spatial component and based on the work of (Wesseling et al., 1996). The
Python libraries Numpy/Scipy, Matplotlib, scikits.timeseries are used for numeric calculation, visualisa-
tion and timeseries-handling respectively. In lumped mode, a similar approach as in Clark et al. (2008)
and Wagener and Wheater (1999) is used with a number of soil moisture and routing components to select
from and combined in a way to support the isolated evaluation of the components. In distributed mode,
a water balance model is calculated for each cell similar to the lumped mode and routing is represented
by its intercell connectivity (Figure 1 B), each with a predefined set of options for the model structure
composition.

The diagnoses of the ensemble of model structures is supported by a set of analysis methods and sup-
porting modules. Evaluation metrics can be selected from the set of implemented objective functions
or derived from the information given by Flow Duration Curves (FDC) or Cumulative Runoff Volume
Curves (CRVC). A combination with the timeseries handling functionality, namely dividing the hydro-
graph in specific time periods, gives the possibility to apply the objective functions on specific time spans
(e.g. seasonal evaluation) to respond to specific research purposes.

The sampling module supports the Monte Carlo based analysis by taking samples for the different param-
eters of the ensemble of model structures, using a Latin Hypercube sampling or a quasirandom sampling
approach. In distributed mode, the sampled values are used to relatively change the distributed param-
eter values altogether. While the framework brings the possibility of formulating highly parameterized
models, it must be taken into account that sampling from high dimension spaces is difficult and defining
the sampling distributions should be done carefully. For lower dimensional problems quasirandom sam-
pling is advantageous, but for high-dimensional problems both methods have restrictions (Mauntz and
Kucherenko, 2007). The output of the RSA and the GLUE analysis gives information about the sensitiv-
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ity, interaction and identifiability of the parameters and about the output uncertainty. Evaluation of the
uncertainty for the ensemble of behavioural structures as in Krueger et al. (2010) as well as making an as-
sessment of the effect of changing one specific component on the rest of the model structural parameters
is possible by fixing the remainder of the model.

5 CONCLUSIONS

A set of scripted modules and tools is presented to make a rigourous assessment of the relation between
model structure and model performance. This flexible model approach responds to the fact that it is
unlikely that a single model structure provides the best streamflow simulation for multiple catchments or
for the same catchment when exploring different objectives. As such, model identification can be seen
as a combined effort of parameterization and structure identification, supporting an iterative approach
to modeling, considering the model as a set of hypotheses that evolves progressively, adapting to the
catchment characteristics and to the data (Fenicia et al., 2008).

By making use of the scripting language Python instead of a GUI-software package, the framework is
flexible in use and easy to extend. The framework provides the possibility of doing a rigorous analysis
of the model structural underlying hypotheses instead of an automated way to define the optimal model
structure. Although the model components are defined to construct hydrological models, the evaluation
methods can be used to investigate other dynamical models. The combination of a modular model ap-
proach and a diagnostic environment has got a lot of potential as it supports testing of different research
questions. Extending the model components as well as adding new analysing methods is possible and
form part of further development.
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