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Abstract: The development of a regional flood frequency analysis (RFFA) method for Western Australia 
(WA) poses a number of challenges: the region is very large and sparsely gauged, except for the South-west 
of the State, and in this more densely gauged part there is a significant variation of hydrological 
characteristics from coastal to inland areas. This paper describes how these challenges can be overcome by 
dividing the state into three different regions and by selecting the most appropriate RFFA method from a 
range of candidate methods.  The database adopted for WA comprises data from 146 catchments. The State 
was divided into three distinct regions since there are concentrations of stream gauging stations in these three 
parts, which are separated by long distances. These three regions are (i) Kimberley region, with 14 stations 
(top part of WA from Drainage Division VIII) (ii) Pilbara region, with 12 stations (middle western part of 
WA, Drainage Division VII) and (iii) South-west WA, with 120 stations (Drainage Division VI). The 
analysis adopted in this study includes a Bayesian Generalised Least Squares (BGLS) regression approach in 
developing prediction equations for selected flood quantiles (Quantile Regression Technique – QRT) or for 
the first 3 moments of the LP3 distribution (Parameter Regression Technique – PRT). The BGLS regression 
model explicitly accounts for the sampling variability in the dependent variable data e.g. inter-station 
correlation and variation in record lengths from site to site, and offers a better alternative to the most 
commonly adopted Ordinary Least Squares regression.  

For the South-west of WA, two methods for forming regions are considered. Firstly, in the fixed region 
approach, all the 120 sites are assumed to form one region. Secondly, in the Region of Influence (ROI) 
approach, a region is formed around each of the 120 sites, with an appropriate number of stations, based on 
the criterion of minimum model error variance. To make the best use of the data, the developed prediction 
equations are validated using one-at-a-time cross validation. For South-west WA it has been found that area 
and design rainfall intensity are the best predictor variables for use with the QRT and PRT based on a 
number of statistical diagnostic criteria. It has been found that ROI outperforms the fixed regions and that 
ROI consistently delivers better regions with reduced level of heterogeneity on average. This is evidenced by 
the reduction in model error variance, standard error of prediction and average variance of prediction with the 
ROI approach in comparison to the fixed region. Based on independent testing it was found that the QRT-
ROI and PRT-ROI methods perform very similarly with relative root mean square errors (RMSEr) ranging 
between 13% to 19% for PRT and 8% to 15% for the QRT, which compare very well with the validation 
results of RFFA studies from other Australian states.  For the Kimberly and Pilbara regions both QRT and 
PRT in the BGLS framework are tested using a fixed region approach. The results for both the regions show 
that area and design rainfall intensity are the best predictor variables for use with the QRT and PRT. 
Independent testing from one-at-a-time validation for the Kimberly region reveals that QRT and PRT are 
very similar in predictive performance in that the RMSEr are in the range of 3% to 4% for the QRT and 4% 
to 5% for the PRT. Similarly the validation for the Pilbara region reveals satisfactory results, with the RMSEr 
ranging from 5% to 8% for the QRT and 4% to 7% for the PRT.  This suggests that both QRT and PRT are 
viable options for RFFA in WA and that ROI is the best option to deal with the spatial heterogeneity of flood 
data in South-west WA. The findings from this study and other on-going RFFA studies will form the basis of 
recommendations for new RFFA methods in the new Australian Rainfall and Runoff for WA.  

Keywords: Regional flood frequency analysis, Western Australia, Bayesian Generalised Least Squares 
Regression, Quantile Regression Technique, Parameter Regression Technique  
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1. INTRODUCTION 

Australian Rainfall and Runoff 1987 (ARR87) recommended various regional flood frequency analysis 
(RFFA) methods for the different states of Australia depending on the data availability in respective states. In 
ARR87, the recommended methods for Western Australia (WA) were based on both a rational method and 
an index type RFFA approach. To apply these RFFA methods, five different regions based on climate and 
rainfall regimes were identified being the “South-west”, “Wheat Belt”, “Kimberley” and “Arid Interior”; 
these regions  were further sub-divided on the basis of vegetation and soil type (see  Figure 1.7 in ARR87, 
page 14, Book IV). It should be noted that the quality and quantity of the streamflow data used for deriving 
these RFFA methods varied quite considerably. For the South-west region the quality of the data was 
considered to be good, however the data quality deteriorated with the distance from the South-west region. 
Since 1987, the RFFA methods in ARR for WA have not been upgraded similar to other Australian states 
even though there have been notable developments in both at-site and RFFA techniques in Australia and 
internationally (e.g. Tasker and Stedinger 1989; Reis et al., 2005 and Micevski and Kuczera, 2009). Also, 
there has been an additional 20 years of streamflow data available at many gauging locations in WA. As a 
part of the current upgrade of ARR, new RFFA methods for WA are being investigated similar to other 
Australian states.   

The main objective of this paper is to develop a RFFA method for WA using Bayesian Generalised Least 
Squares (BGLS) regression. The advantages of GLS regression are that this technique accounts for the inter-
station correlation and varying record lengths from site to site. In this paper, the BGLS regression technique 
is used to regionalise the first three moments of the log Pearson Type 3 (LP3) distribution, which is referred 
to as Parameter Regression Technique (PRT) here. Also, a Quantile Regression Technique (QRT) is 
developed in this paper where prediction equations are developed for selected flood quantiles for comparison 
with the PRT. Two approaches are used for the formation of regions: (a) fixed regions where all the available 
stations are considered to form one region; and (b) a Region of Influence (ROI) approach (Burn, 1990) where 
each of the stations form its own region by selecting appropriate number of nearby stations. For South-west 
WA both the fixed region and ROI approaches were tested for two reasons (i) this is a vast area with a good 
number of stations being available and (ii) the South-west region is likely to have different sub-regions due to 
different climate and catchment regimes. With the ROI a region is formed around each of the study 
catchments, where the size of the ROI is guided by the criterion of ‘minimum model error variance’; this is 
likely to reflect any natural variability in regions. For both the Kimberly and Pilbara regions there was not 
many stations available (only 14 and 12 respectively) and given that they were situated at great distances 
apart a fixed region regression approach was adopted for each of the Kimberly and Pilbara regions. Model 
performance for all the three regions is examined using a one-at-a-time (OAT) cross validation approach 
where one site is left out before developing the model, and then  the developed model is applied to this 
catchment and the procedure is repeated until each of the catchments in the data set has been independently 
tested. A number of statistics are used to select the best set of predictor variables in the BGLS regression. 
The relative root mean square error was used to identify the best performing model between the fixed regions 
and ROI with both the QRT and PRT for South-west WA and fixed region QRT and PRT for the Kimberly 
and Pilbara regions. 

 

Figure 1. Geographical locations of the streamflow gauging 
stations used in this study. 

 

2. DATA PREPARATION 

A total of 146 catchments were selected from Western Australia 
(WA) for this study. The spatial distributions of these catchments 
are shown in Figure 1. These sites are mostly unregulated and 
have not been affected by major land use changes (catchments 
with more than 10% of the area affected by urbanisation were 
excluded). The streamflow data of these sites were prepared 
following a stringent procedure as described in Haddad et al. 
(2010). The lengths of the annual maximum flood series in the 
catchments vary between 20 and 57 years (mean: 31 years). The 
catchment areas in the database are in the range of 0.1 to 7406 
km2 (mean: 323 km2). Based on the findings from previous studies 

South-west 
region 

Pilbara region 

Kimberly region 
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(e.g. Rahman et al., 2009), a total of seven explanatory variables were used: (i) catchment area expressed in 
km2 (area); (ii) design rainfall intensities (mm/h) for the 2-year average recurrence interval (ARI) with 1 and 
12-hour durations (2I1, 

2I12), 50-year ARI with 1-hour duration (50I1) and 50-year ARI with 12-hour duration 
(50I12), design rainfall intensity values in mm/h IARI,tc (where ARI = 2, 5, 10, 20, 50 and 100 years and tc = 
time of concentration (hour), estimated from tc = 0.76(area)0.38); (iii) mean annual rainfall expressed in mm/y 
(rain); (iv) mean annual evapo-transpiration expressed in mm/y (evap); (v) stream density expressed in 
km/km2 (sden);  (vi) main stream slope expressed in m/km (S1085) and (vii) forest cover expressed as a 
percentage (%) of catchment area (forest). The explanatory variables were transformed using natural 
logarithms. Each log-transformed explanatory variable was centered by subtracting its mean value (obtained 
from the available data set), so that the intercept term in the regression equation represents the log-mean of 
the observed dependent variable data. 

3. METHODS 

3.1. At-site Flood Frequency Analysis 

The at-site flood quantiles for each of the selected  stations were estimated by fitting the LP3 distribution (I. 
E. Aust, 1987) to the observed annual maximum flood series using the Bayesian parameter fitting procedure 
in FLIKE (Kuczera, 1999). No prior information was used in fitting the data, low outliers were censored and 
the effects of rating curve errors were incorporated in the flood quantile estimates using the inbuilt facility in 
FLIKE. The average recurrence intervals (ARIs) considered in this study was 2, 5, 10, 20, 50 and 100 years. 
The mean, standard deviation and skew values of ln(Q) for each site i, were extracted from FLIKE for use 
with the PRT (where Q represents annual maximum flood series in m3/s).  

3.2. Generalised Least Squares Regression and Bayesian Approach  

The GLS regression framework (e.g.Tasker and Stedinger, 1989) can be used to develop empirical 
relationships between the desired hydrologic variable, such as the flood quantile or mean, standard deviation 
and skew of the annual maximum flood series, and catchment and climatic characteristics data. The GLS 
analysis assumes that the hydrological variable of interest denoted by yi for a given site i can be described by 
a linear function of catchment and climatic characteristics (X) (e.g. design rainfall intensity or catchment 
area) with an additive error. Following Reis et al. (2005): 


=

++=
k

j
iijji Xy

1
0 δββ       ni ,...,2,1=                                                                                                    (1) 

where  (j = 1,…,k)  are predictor variables, n = number of sites in the region,  β are the regression 
coefficients,  iδ  is the model error which is assumed to be normally and independently distributed with 

model error variance 2
δσ . In most cases only an at-site estimate of yi is available. To describe the error in the 

data, a sampling error ηi must be introduced into the model. Thus the observed regression model error εi is 
the sum of the model error and the sampling error. The sampling error in the sample estimators of the flood 
quantiles and the parameters of the LP3 distribution may in some situations explain all the variability 

observed in the data, which means that 2ˆδσ may become negative. A negative model error variance is 

unrealistic as noted by Reis et al. (2005). In this situation, a Bayesian estimator (BGLS) of the model error 
variance may be used to safeguard against this happening. Further details on this can be found in Reis et al. 
(2005) and Micevski and Kuczera (2009). In summary, the Bayesian estimator offers a better way of dealing 
with the model error and quantifying associated uncertainty about it.  

3.3. Region of Influence Approach for South-west Western Australia 

The Region-of-Influence (ROI) approach (Burn, 1990) is based on the concept of pooling of appropriate 
‘nearby’ sites into groups. Each site of interest (i.e. site for which flood quantiles or moments are to be 
estimated) has its own ‘unique’ group. In any ROI approach the selection of a distance measure for defining 
the ‘unique’ group is needed.  For this study the ROI is based on the geographical distance from the site of 
interest. Initially we carry out a fixed region BGLS regression to identify the best set of predictor variables in 
the region that minimises the model error variance or heterogeneity in the model, while also satisfying a 
number of statistical diagnostic measures. In the second step, the ROI is implemented to reduce the 
heterogeneity that is not accounted for by the catchment variables. In this step, the first 15 sites nearest to the  
site in question are selected and the BGLS regression is performed and the model error variance is noted. The 
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ROI then goes on to select the next five closest sites which are then added to the previously selected 15 sites 
and the BGLS regression is repeated. The procedure continues until all the sites (here 120) in the database are 
included in the analysis. The optimum ROI for the ungauged site of interest is selected as the one which 
exhibits the lowest model error variance. 

3.4. Selecting Predictor Variables in the GLS regression 

This section describes the approach adopted for selecting explanatory variables that should be included in the 
prediction equations. We use a procedure similar to stepwise regression utilising all the 120 sites for South-
west Western Australia (WA) and the 12 and 14 sites for the Pilbara and Kimberly regions respectively and 
initially only adopting a constant term in the regression equation. The model error variance and its standard 
error values are noted. We then add predictor variables starting with area followed by different combinations 
of other predictor variables. In all, 16 different combinations of predictor variables were considered for the 
mean, standard deviation and skew models, while 25 combinations were trialed for the flood quantile models 
for South-west WA and Pilbara regions, while 11 combinations for the mean, standard deviation, skew and 
flood quantile models were tested for the Kimberly region. The choice for the preferred regional BGLS 
model was the combination that best satisfied all the following statistical measures, including: (i) minimum 
model error variance; (ii) both the minimum average variance of prediction for a new and old station (AVPN) 
and (AVPO) – as we are interested in making predictions at ungauged sites, the AVP penalises the inclusion 
of extra independent variables because it accounts for the sampling variances of the parameters; (iii) the 
minimum Akaike and Bayesian information criteria (AIC and BIC); these two statistics penalise more 
heavily models with greater number of predictors, i.e. the inclusion of a predictor variable must significantly 
improve the model if it is to be included; and (iv) the highest Pseudo R2 value ( 2

GLSR ). In all the cases the 

simplest model was always preferred. 

3.5. Regression Diagnostics 

The assessment of the regional regression model was made by using statistical diagnostics such as the 
standard error of prediction in percent (SEP). An analysis of variance for the BGLS models was undertaken 
to examine the sampling and model errors. The analysis of residuals provides a means of assessing the model 
fit and identifying potential outliers. In this study, the standardised residual was used, which is the raw 
residual divided by the square root of its variance, which also takes into account the sampling error variance. 
To assess the adequacy of the model in estimating flood quantiles, a Z score was used, here the numerator is 
the difference between the at-site flood quantile and regional flood quantile (estimated from the developed 
regression equation, QRT and PRT) and the denominator is the square root of the sum of the variances of the 
at-site and regional flood quantiles in natural logarithmic space. 

3.6. Evaluation Statistics 

A one-at-a-time (OAT) cross validation procedure was applied to assess the performance of both the BGLS-
QRT and PRT fixed and ROI methods. The site that is left out in building the model is in effect being treated 
as an ungauged site.  Since all the sites in the database are being treated in turn as ungauged for ROI, this 
automatically satisfies the OAT validation approach. The following performance statistic was calculated 
from the fixed and ROI analysis: the relative root mean square error (RMSEr) as described below. 


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where obsQ is the observed flood quantile obtained from at-site flood frequency analysis estimated using 

FLIKE (Kuczera, 1999); predQ  is the predicted flood quantile from the regional prediction equation and n is 

the sample size. The RMSEr (%) statistic provides an indication of the overall accuracy of the regional 
model.  The model with the smallest RMSEr between the two competing models with the same number of 
parameters is generally preferred. 

4. RESULTS 

Figure 2 shows example plots of the statistics used in selecting the best set of predictor variables for the skew 
coefficient of the LP3 distribution for the Kimberly region. For the skew model, combination 1 with no 

explanatory variable had the lowest model error variance ( 2
δσ ) of 0.0858. The AVPO and AVPN values were 
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also the lowest with combination 1 (see Figure 2). There is enough evidence to stay with combination 1 (it 
may be argued that a regional average skew is applicable), as the increase in 2

GLSR  value for combination 8 

was insignificant. Also the variables with combination 7 are not highly significant as the regression 
coefficients with both area and rain were less than two standard deviations away from zero. In this case, 
combination 1 was adopted. For Q10 the model error variance showed that combinations 3, 4, 5, 6, 7 and 8 
were the top potential sets of predictor variables. All these combinations did not differ greatly in model error 
variance and 2

GLSR  values. The AVPO, AVPN, AIC and BIC were also very similar. In this case, combination 

6 with variables area and 2I12 was adopted. It was also found that the variable 2I12 was significant in the 
regression analysis for all the flood quantile models with the regression coefficient being greater than three 
times the posterior standard deviation away from zero. The same procedure as discussed above was adopted 
in selecting the best set of predictor variables for other models with the QRT. The set of predictor variables 
selected as above were used in the OAT validation approach. The same analysis as presented above was 
carried out for the Pilbara and South-west regions of WA. For the Pilbara region both area and 2I12 were 
significant variables for the mean flood and flood quantile models. For the standard deviation both area and 
forest were not significant, while for the skew coefficient both area and sden were not significant. For South-
west WA, both area and IARI,tc were significant predictors for the flood quantile models. For the parameters 
of the LP3 distribution, rain and evap were relatively good predictors for the skew and area and 2I12 were the 
best predictors for the mean flood model. From this analysis the developed equations are taken to be the best 
prediction equations for the fixed region and ROI methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Selection of predictor variables for the BGLS regression model for skew 

The ROI results for South-west WA are summarised as follows, the average number of sites selected in the 
ROI for the moments and flood quantiles of the LP3 distribution ranged between 42 (mean flood) and 71 
(Q100) stations. The results revealed that the ROI mean flood typically has fewer sites than the ROIs for the 
standard deviation and skew. The results also showed that the skew ROI model has the highest number of 
sites which includes nearly all the sites in South-west WA. Interestingly, it was found that the ROI of the 

ARI = 2 years model has a slightly higher model error variance ( 2
δσ  = 0.61) than that of the ROI ARI = 100 

years ( 2
δσ  = 0.60). This was in line with the ANOVA results (discussed below), which also show that in this 

study the ARI = 2 years estimates exhibit greater heterogeneity. In terms of heterogeneity, it was found 
overall that the predictive variance for a fixed region regression for South-west WA can be inflated by up to 
32% for the flood quantile estimates. An important point to note is that there could be an inherent weakness 

in the fixed region models, as they tend to include more sites, which can inflate 2
δσ , where this is not related 

to the catchment variables alone. Another important point noted is that physical distance may become a 
useful surrogate for the unknown processes in RFFA. The spatial variation for the grouped values of the 
minimum model error variances for the mean flood model were plotted. It was observed that distinct spatial 
patterns were formed, which resembled the ARR1987 regions The results of this analysis reveal  that South-
west WA is highly heterogeneous and that BGLS-ROI might be  the most appropriate RFFA technique to 
deal with this heterogeneity.   
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4.1. Regression Diagnostics 

Below we present a Pseudo Analysis of Variance (ANOVA) for the fixed region (OAT cross validation) and 
ROI approaches. The ANOVA table describes how the total variation among the iŷ  values can be portioned 

among that explained by the model error and the sampling error. This is an extension of the ANOVA table in 
OLS regression which does not recognise and correct for the expected sampling variance. The results for the 
flood quantile model for Q20 are presented in Table 1 for South-west WA. The Q2 experienced the lowest 
error variance ratio (EVR, sampling error variance to model error variance), for all the regions especially the 
Kimberly region. This reflects the much greater spatial variability of the mean which is dominated by local 
factors (as compared to the higher moments) which is manifested in Q2 as it is mostly dominated by the 
mean.  The Q20 shows an EVR of 10% (see Table 1) for the ROI which suggests that the BGLS and ROI 
should be the preferred procedure when modelling the larger ARI quantiles, even though in this particular 
case the ROI has been impacted by the relatively large model error variances that have dominated the 
regional flood quantile modelling. The EVRs for the Pilbara and Kimberly regions were 0.39 and 0.75 
respectively which show that the sampling error has had some affect on the analysis; however with 12 and 14 
stations respectively the sampling error may be slightly overestimated. For all the three regions the EVR for 
the LP3 moment predictors, the sampling error increases as the order of moment increases, therefore the EVR 
increases as well. In the case of South-west WA, for the fixed region and ROI for the mean flood and 
standard deviation models, the model errors dominate the regional analysis. This was more pronounced for 
the mean flood. The EVR for the skew model for South-west WA was 7 and 7.2 for the fixed region and ROI 
respectively, indicating the variation due to sampling error is seven times the variation due to the model 
error. As far as the ROI is concerned there is not a drastic change in the EVR as the skew tends to include 
more stations in the regional analysis given the significantly lower model error variance as compared to the 
sampling error.  

Quantile-quantile (QQ)-plots of the 
standardised residuals vs. normal 
score are used to check if the 
regression assumptions are 
satisfied. The QQ-plot for South-
west WA, ROI and ARI = 20 years 
is illustrated in Figure 3. Figure 3 
shows that the assumption of 
normality and the homogeneity of 
variance for the standardised 
residuals are largely satisfied for 
both the QRT and PRT, with all the points closely following a straight line. The assumption of the normality 
of the residuals could not be rejected at the 10% level of significance using the Anderson-Darling and 
Kolmogorov-Smirnov tests for normality. It was found that the ROI approach approximates the normality of 
the residuals slightly better than the fixed region approach, as found with the standardised residual plots (not 
shown). Similar results were 
also found for the mean, 
standard deviation and other 
flood quantile models. 

The analysis of results in 
terms of average standard 
error of prediction in percent 
(SEP) values for the flood 
quantiles and the parameters 
of the LP3 distribution for 
fixed region and ROI 
analyses for South-west WA, 
Pilbara and Kimberly regions 
is summarised below. For the 
parameters of the LP3 
distribution over all the sites 
in the region, the fixed region SEPs were larger than those of the ROI for South-west WA. For the mean 
flood a difference of 26% was observed. The SEP values for the Pilbara and Kimberly regions for the mean 
flood were also reasonably high.  A negligible difference in SEP was observed for the standard deviation and 

Table 1. Pseudo ANOVA table for flood quantile model                                       
(ARI = 20 years), South-west WA 

Source Degrees of Freedom Sum of Squares 

 Fixed ROI  Fixed ROI 

Model k=3 k=3 n )( 22
0 δδ σσ − = 23 23 

Model error δ n-k-1=116 n-k-1=61 n )( 2
δσ = 108 67 

Sampling error N = 120 N = 65 )]ˆ([ ytr Σ  = 7 6 

Total 2n-1 = 239 2n-1 = 130 Sum of the above 138 95 

   EVR 0.06 0.10 

 

ARI 20 (ROI)

y = 0.9942x - 7E-17
R2 = 0.9883

y = 0.9546x + 0.0132
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Figure 3. QQ-plot of the standardised residual vs. Z score of the fitted quantiles, 20 years ARI 
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skew models for ROI in South-west WA, the SEPs values for the standard deviation and skew models were 
modestly high because of the large sampling errors. In all the cases (fixed and ROI) the mean flood has the 
higher average variance of prediction (AVP) (i.e. shows greater heterogeneity) than both the standard 
deviation and skew model. What was striking for South-west WA is the ROI values are consistently better 
suggesting that ROI would provide parameter estimates of the LP3 distribution with less heterogeneity on 
average.   

4.2. Evaluation Statistics 

Based on independent testing it was found that the QRT-ROI and PRT-ROI methods perform very similarly 
with relative root mean square errors (RMSEr) ranging between 13% to 19% for PRT and 8% to 15% for the 
QRT, which compare very well with the validation results from other Australian states (see Rahman et al., 
2011).  For the Kimberly and Pilbara regions, both the QRT and PRT are tested using a fixed region 
approach. Independent testing from one-at-a-time validation for the Kimberly region reveals that QRT and 
PRT are very similar in predictive performances in that the RMSEr are in the range of 3% to 4% for the QRT 
and 4% to 5% for the PRT. Similarly the validation for the Pilbara region reveals satisfactory results with the 
RMSEr ranging from 5% to 8% for the QRT and 4% to 7% for the PRT. 

5. DISCUSSION AND CONCLUSIONS 

This study compared two regional flood frequency analysis methods, the fixed region and region-of-influence 
(ROI) approaches for South-west WA, the Pilbara and Kimberly regions. A BGLS regression was used to 
develop prediction equations for flood quantiles of ARIs of 2 to 100 years (QRT) and the first three moments 
of the LP3 distribution (PRT). It has been found that area and design rainfall intensity are the most significant 
for the estimation of the flood quantiles and parameters of the LP3 distribution. When compared to the fixed 
region approach, the ROI approach with both QRT and PRT shows improvements by reducing the influence 
of regional heterogeneity, with a decrease in the model error variance and the average standard error of 
prediction for South-west WA. The diagnostic plots of the ROI approach for South-west WA and fixed 
regions for the Pilbara and Kimberly satisfy the underlying model assumptions very well.  Based on 
independent testing it was found that the QRT-ROI and PRT-ROI methods perform very similarly which 
compare very well with the validation results from other Australian states. Independent testing from one-at-a-
time validation for the Kimberly and Pilbara region reveals that QRT and PRT are very similar in predictive 
performances as well with similar RMSEr. This suggests that both QRT and PRT are viable options for 
RFFA in WA and that ROI is the best option to deal with the spatial heterogeneity of flood data in South-
west WA. The findings from this study and other on-going RFFA studies will form the basis of 
recommendations for the new RFFA methods in the upcoming Australian Rainfall and Runoff for WA.  
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