
Modelling bushfire impact on hydrology: The 
implications of the fire modelling approach on the 

climate change impact 
G.R. Willgoosea 

a Discipline of Civil, Surveying and Environmental Engineering, Faculty of Engineering and the Built 
Environment, The University of Newcastle, Callaghan, 2308 Australia 

Email: garry.willgoose@newcastle.edu.au 
In dry environments bushfire is an integral part of the dynamics of the environmental system. Thus any 
computational model of the environment (e.g. the effect of climate change on vegetation, hydrology, 
landform evolution, etc) needs to include a model of bushfire (e.g. Thonicke, et al 2001). Distributed models 
need to not only model the temporal distribution of bushfire but also their spatial distribution. The spatial 
properties of bushfires include the location of the initiation point of the fire and the spread in space from that 
initiation point. Thus the time history of bushfire at any specific location in space is a function of the rate of 
bushfires in the region surrounding that point, and the likelihood that any given fire will spread to the point 
under consideration. Thus the fire history at a point is a function of the both the temporal and spatial 
properties of bushfire. 

In the applications contemplated in this paper we are making predictions into the future so we need to be able 
to make predictions in a statistical, rather than a deterministic, sense. Accordingly we are looking for a 
minimalist model that involves replication of the statistical properties of bushfire rather than a deterministic 
model that might be used for the prediction of the behavior of any individual bushfire event. Deterministic 
models of bushfire propagation exist (e.g. FARSITE; Finney et al, 1998) but their use for statistical 
prediction is limited because they require a variety of environmental inputs (e.g.. humidity, wind speed, fuel 
load) that themselves need to be independently predicted (Pastor et al, 2003).  

This paper explores a simpler, purely statistical, approach where bushfire is modeled directly by monte-carlo 
simulation. The model is calibrated to published data for bushfire and then some preliminary assessment of 
its usefulness for looking at the impact of bushfire on hydrology is examined. The idea of the model 
presented here is that fire is modeled as a random process on a grid. Fire is randomly initiated at a time and a 
location, and some area around that location is then burnt. The burn history of the landscape is then the 
history of all of the individual fires that have been randomly generated in space and time.  

A spatially distributed stochastic simulation bushfire model is presented and it is calibrated to remotely 
sensed fire data. It is shown that the assumption of how the frequency of a fire and its subsequent extent are 
related has a significant impact on the net impact of bushfire on hydrology. In particular, it highlights how 
important it is to distinguish between how often, on average, a bushfire burns a location, and how often, on 
average, a location has an ignition event. These two properties are different and that climate change 
predictions will need to provide information on both of these properties.  

The fire model presented is very simple and this is its first test against field data. There are a number of areas 
where it might be improved to gain better fit to field data. The most obvious is a relationship between the last 
time a node was burnt and where fires are initiated and/or propagated. This will likely be linked to rate of 
recovery of biomass and thus there might be some form of climate dependency. There is also a need for more 
thorough testing of the spatial statistics of the model using data from other sites (e.g. Haydon et al 2000) and 
more comprehensive longitudinal datasets using NDVI and Landsat datasets. 
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1. INTRODUCTION 

In dry environments bushfire is an integral part of the dynamics of the environmental system. Thus any 
computational model of the environment (e.g. the effect of climate change on vegetation, hydrology, 
landform evolution, etc) needs to include a model of bushfire (e.g. Thonicke, et al 2001). Distributed models 
need to not only model the temporal distribution of bushfire but also their spatial distribution. The spatial 
properties of bushfires include the location of the initiation point of the fire and the spread in space from that 
initiation point. Thus the time history of bushfire at any specific location in space is a function of the rate of 
bushfires in the region surrounding that point, and the likelihood that any given fire will spread to the point 
under consideration. Thus the fire history at a point is a function of the both the temporal and spatial 
properties of bushfire. 

In the applications contemplated in this paper we are making predictions into the future so we need to be able 
to make predictions in a statistical, rather than a deterministic, sense. Accordingly we are looking for a 
minimalist model that involves replication of the statistical properties of bushfire rather than a deterministic 
model that might be used for the prediction of the behavior of any individual bushfire event. Deterministic 
models of bushfire propagation exist (e.g. FARSITE; Finney et al, 1998) but their use for statistical 
prediction is limited because they require a variety of environmental inputs (e.g.. humidity, wind speed, fuel 
load) that themselves need to be independently predicted (Pastor et al, 2003).  

This paper explores a simpler, purely statistical, approach where bushfire is modeled directly by monte-carlo 
simulation. The model is calibrated to published data for bushfire and then some preliminary assessment of 
its usefulness for looking at the impact of bushfire on hydrology is examined. The idea of the model 
presented here is that fire is modeled as a random process on a grid. Fire is randomly initiated at a time and a 
location, and some area around that location is then burnt. The burn history of the landscape is then the 
history of all of the individual fires that have been randomly generated in space and time. The details of the 
model and its calibration follow. 

2. OBSERVED SCALING OF FIRE AREA AND FREQUENCY 

Data exist to suggest that a purely statistical 
representation of bushfire is in fact feasible. 

Malamud et al (1998) observed a log-log scaling 
relationship between fire size and fire frequency 
for four regions in the USA and Australia (US 
Fire and Wildlife Service Lands; Western USA; 
Alaskan boreal forests; ACT, Australia) (see 
Figure 1). These relationships are log-log linear 
over a large range of fire area. The average fire 
size for a given frequency of recurrence is 
different for each region. However, the scaling 
between frequency and fire size (the slope of the 
fitted line in Figure 1) is surprisingly consistent 
suggesting the possibility of universal behaviour 
for frequency versus area. It is not clear from 
Malamud what role fire suppression activities 
(both before and during the fire events) had in 
determining the ultimate fire area. However, the 
log-log linear scaling relationship provides a useful hypothesis that we will use in this paper to examine the 
effect of climate change and wildfire on hydrology in a stochastic modeling framework. Yates et al (2008) 
provide a fire frequency analysis for Northern Australia tropical savannas that also shows this log-log 
scaling. 

3. THE STOCHASTIC MODELLING FRAMEWORK 

The model as described below was implemented as a Python module, WildFire2, in the TelluSim 
environmental modeling system (Willgoose, 2009). 

 
Figure 1: Typical fire frequency vs burnt area data 
from Malamud et al (1998). The vertical axis is the 

noncumulative number of fires per year with area AF. 
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3.1. The Fire Model 

Fire is simulated with a monte-carlo model consisting of three parts; (1) A fire initiation event, (2) a location 
for the fire, and (3) the area for the fire.  

The fire initiation event is function of the rate of occurrence of fires/unit area. Normally fire data does not 
measure this fire occurrence rate directly but rather it needs to be determined indirectly from the amount of 
land burnt in any year as measured from remote sensing images. The simplest mathematical case is that 
where it can be assumed that any point in the landscape can only be burnt once in any one year and where all 
fires are the same area. In that case the mean rate of fire occurrence/unit area/year  is simply  

= (%         / )
∗(             )

 (1) 

In the model a fire occurs in the domain in any given timestep if a uniformly distributed random number in 
the range [0, domain area] is greater than . In the simulations that follow a mean fire area is assumed and the 
rate determined by calibration to the field fire data.  

The location of the fire is randomly located in space with a Poisson distribution. In the basic form of the 
model, used in this paper, there is no influence of the fire initiation point from the burn history of that point 
so that recently burnt points are just as likely to be initiation locations as other points. 

The size and the shape of the fire can be modeled with a variety of mechanisms. Three size assumptions are 
tested in this paper (1) the burnt area of all fires have the same area, (2) the burnt areas are randomly 
distributed (with a uniform distribution) between a specified upper and lower bound, (3) the burn areas are a 
function of the frequency of occurrence as given by Malamud’s data with scaling exponent = -1.4. Previous 
unpublished work by the author suggested that the influence of the shape of the fire on average burn statistics 
is second order so, for simplicity, in this paper we use only square burn areas. 

For the case where the fire area varies with occurrence frequency (as in Malamud’s data) the area range of 
fires to be simulated was discretized and the relative rate of occurrence for each size within that range applied 
from the scaling relationship. The total fire return rate was calibrated to the percent burnt data and the 
relative rates scaled up and down to match the percent burnt per year data. This ensures that the relative rate 
of fire occurrence for the different size is matched and the total number of fires/year matches the percent 
burnt data. 

3.2. The Hydrology Model 

Robust data about the effect of fire on 
hydrology and the timescales over which it 
recovers to pre-fire rates is rather sparse, 
site/geography/soil/vegetation dependent, 
and difficult to generalise. Some studies 
indicate that runoff rates increase post-fire 
because of the creation of seal on the soil 
surface by heat. Once this seal is broken 
runoff rates return to pre-fire rates quickly, 
perhaps within the year (e.g. Beeson et al., 
2001). Other studies indicate long term 
declines in runoffs that take many years to 
recover (e.g. Kuczera, 1987). The driver for 
this latter behaviour is that trees use more 
water to replace biomass destroyed in the 
fire and this increase in biomass production 
requires increased water use (and 
consequent decreased runoff) through the 
link between transpiration and 
photosynthesis. This paper is concerned 
about reductions in water yield so the focus 
will be on the Kuczera curve. Kuczera 
presented data fit to catchment runoff for a 
number of catchments and found that yields 
declined for 20-30 years after the fire, then 

   (a)  

 
   (b) 

Figure 2: (a) Runoff yield reduction curve after fire from 
Kuczera (1987), (b) The yield curve from Equation (2). 
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subsequently increased with time and that full 
recovery of pre-fire yield was projected to take 
over 100 years. The maximum runoff decline 
(occurring at 20-30 years) varied from 25-50% in 
catchments where 100% of the catchment was 
burnt. The model used in this paper for yield is 
based on Kuczera’s findings but was not 
systematically fit to his datasets. The equation 
used here for the yield reduction is: 

   = 

     (1 − 1 − ) (2) 

where  and   are both equal to 0.03 and t is 
the number of years since the fire (Figure 2b). The curve in Figure 2a that equation (2) approximates is 
commonly called the Kuczera Curve.  

Later in the paper we will also look at an accelerated Kuczera Curve where  and   are equal to 0.3. This 
parameter change increases the rate of change of vegetation impact by a factor of 10 (or in Figure 2b changes 
the time axis from 100 years to 10 years). This will be used to explore the impact of faster recovery of 
vegetation as might expected for shrubs and grasses, rather than the trees in the original Kuczera work. 

3.3. The Climate Change Model 

The role of climate change in the simulations here will be modeled in a very simple fashion. We will assume 
that the sole role of climate change will be to change the frequency of a given size fire event. In this way we 
will capture the idea that as the landscape becomes drier and fire fuel load is drier there will be an increase in 
fire initiation events.  

It is recognized that this is extremely simplistic and ignores effects such as (1) the reduction in fuel load as 
the climate dries which in turn reduces vegetation growth and thus dead biomass (e.g. Bradstock, 2010) or (2) 
change in vegetation regime (Murphy et al, 2010). However, this would require a climate simulator to run a 
vegetation model, which is beyond the scope of this paper. This paper explores a simple approach to 
including fire occurrence in a spatially distributed hydrology model without the explicit use of climate data in 
much the same way that autoregressive moving average (ARMA) models have historically been used for 
single site stochastic hydrology simulation without the explicit use of climate data. 

4. CALIBRATION OF THE FIRE MODEL TO FIELD DATA 

4.1. The Field Data 

Russell-Smith et al (1997) used remote sensing (Landsat Multispectral Scanner) to map the areas of 
individual fires in Kakadu National Park in the period 1980-1994.  These data were ground-truthed with an 

 
Figure 3: Pixel burn data from Russell-Smith (1997) 

(a) (b) (c)  

Figure 4: Calibration for the 3 burnt area models at 15 years. (a) Constant area=100 pixels, (b) Variable area from 0 to 
200 pixels (average area=100 pixels), and (c) the Malamud scaling model with exponent=-1.4. 
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80% agreement in burnt areas. This data was further 
disaggregated into the three major geographic zones in 
Kakadu; Floodplain, Arnhem Plateau and Lowlands (this 
paper only uses the Lowlands data, Figure 3). From these 
data they were able to derive statistics for: 

 percentage area burnt each year,  
 area burnt disaggregated by vegetation type,  
 number of times burnt in 1980-1994 (Figure 3), and 
 relationship between burnt and preceding wet season 

rainfall (most burning occurs in the dry season). 

Yates et al (2008) and Murphy et al (2010) provide more 
restricted statistical analysis of fire scars in the same 
region and are quantitatively consistent where there is 
overlap in the statistical analyses used. 

4.2. Calibration 

The 3 different fire models were calibrated to the fire data 
of Russell-Smith by selecting a fire burn area and  
adjusting the fire initiation rate/unit area until the model 
gave the same mean number of times burnt (i.e. number of 
times burnt=8.3). The simulations started with a 
completely unburnt domain, effectively equivalent to the 
analysis of Russell-Smith. The probability distribution 
functions (pdfs) of the 3 fits are almost identical (Figure 
4) with only insignificant differences between them. The 
pdfs of the calibration are all slightly skewed to the left 
while the field data is slightly skewed to the right. This 
appears to be a consistent characteristic of the model and 
is independent of burn shape, area and orientation. At very 
early times (when a large proportion of the region is still 
unburnt) the model is strongly skewed to the left and Russell-Smith did report one data set similarly skewed 
to the left. If the model is allowed to run for much longer times (i.e. beyond the 15 years of the calibration 
data) the model converges on a symmetric, unskewed pdf (Figure 5) but never achieves a pdf skewed to the 
right exhibited by the Lowlands dataset. This suggests that there may be an as yet unidentified ‘age’ effect in 
the skewness of the pdf. 

Despite the similarity in the pdfs from the three models for the number of times burnt, the spatial patterns of 
the burnt areas are visually different (Figure 6) suggesting that spatial geostatistical measures (such as spatial 
correlation scales) of the burn pattern might be different. Russell-Smith did not report any geostatistics so no 
comparison has been made. 

(a)

(b)

(c)

Figure 6: Burn patterns from the 
calibration for (a) constant area, (b) 
variable area, (c) Malamud scaling 

model. 

 
Figure 5: Calibrated constant area burn model after 

90 years, starting from 100% unburnt at time=0. 
Compare the symmetry with Figure 4a. 
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5. THE HYDROLOGY IMPACT OF THE 
CHANGE IN FIRES DUE TO CLIMATE 
CHANGE 

5.1. Baseline Fire Hydrology Simulations 

If a time burnt pdf (i.e. Figures 3-5) is available 
then a simple model for the effect on hydrology of 
the Kuczera Curve can be determined without the 
direct use of the monte-carlo model. Each 
ordinate of the pdf gives the number of times the 
catchment is burnt in a given period (in the case 
of Russell-Smith’s data, the 15 years from 1980-
1994) and from this the mean time since that 
portion of the catchment was last burnt can be 
determined. For instance, if 12% of the catchment 
was burnt 10 times in a 15 year monitoring period 
then on average 12% of the catchment will have 
been burnt 1.5 years previously. This is no doubt 
a simplification of the process, because it ignores: 

(1) the burn history prior to the monitoring period (the reason for the difference between Figure 4a and 
Figure 5) and, 

(2) the cumulative impact of regions being burnt multiple times on hydrology (Kuczera indicates that yield 
reductions are cumulative but not in a well understood way). 

That said it is a simple analytic solution that can be used to compare with model simulations. Figure 7 shows 
its application to the observed data in Figure 3 for a period of 10 years. The amounts of reduction in the 
hydrology should not be taken as predictions for a specific site because the fire data comes from a highly fire 
prone region in monsoonal Northern Australia and the Kuczera Curves comes from a much less fire prone 
region in alpine Southern Australia. Rather they are provided here as a simple demonstration of the 
technique. To explore what might be a more realistic response in the monsoonal tropics where most 
vegetation are grasses and recovery from fire is quick we use the accelerated Kuczera Curve (Figure 7). It 
can be seen that the relative impact of the acceleration of the timescales of vegetation response magnifies the 
reduction in the runoff yield, everything else being equal. 

5.2. Climate Change Hydrology Simulations 

To look at the incremental effect of climate change we cannot use the Russell Smith data but we must use the 
model calibrated to the data. In the discussion that follows only the Malamud scaling model is discussed 
because the results for all three models (constant area, variable area, Malamud scaling) are comparable in the 
results they yield for the incremental impact of climate change driven changes in fire frequency. The results 

 
Figure 7: Simulated yield reduction for the normal 
(blue line) and accelerated Kuczera Curve (red line) 

under current climate starting from an unburnt 
landscape. 

 
Figure 8: The effect of climate change on hydrology. (a) the pdf for the number of times burnt for the 
baseline case for a 45 year simulation, (b) as for figure (a) but with a 20% increase in the rate of fire 

frequency, (c) the effect on runoff yield using the traditional (red and blue) and accelerated (green and lilac) 
Kuczera curves for pre (blue and green) and post (red and lilac) 20% climate change.  
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are shown in Figure 8. 

The surprising result is that climate change driven bushfire changes have almost no impact on the hydrology 
with the yields after the first few years being almost identical. The main difference is in the timing of the 
initial change in hydrology with a slightly faster response after climate change (due to the higher frequency 
of fires) but both systems settle down to a long average drop in runoff yield that is almost identical. Given we 
have applied a step change in climate and climate change is in fact gradual the differences in the first few 
years are unlikely to be noticeable in practice. The preliminary conclusion is that climate change, while 
changing bushfire frequency, will not produce a measureable impact on runoff yield as a result of changes in 
fire frequency.  

6. CONCLUSIONS 

This paper has presented a new stochastic model for bushfire and demonstrated its use in spatially distributed 
hydrology simulation, and possible hydrological impacts of climate change driven changes in bushfire 
frequency. The analysis demonstrates that it might be a useful tool that could lead to novel insights into the 
environmental impact bushfire. 

The fire model presented is very simple and this is its first test against field data. There are a number of areas 
where it might be improved to gain better fit to field data. The most obvious is a relationship between the last 
time a node was burnt and where fires are initiated and/or propagated. This will likely be linked to rate of 
recovery of biomass and thus there might be some form of climate dependency. There is also a need for more 
thorough testing of the spatial statistics of the model using data from other sites (e.g. Haydon et al 2000) and 
more comprehensive longitudinal datasets using NDVI and Landsat datasets. 
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