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Abstract: Throughout the last decades uncertainty analysis has become an essential part of environmental model 
building (e.g. Beck 1987; Refsgaard et al., 2007). The objective of the paper is to introduce stochastic and set-
membership uncertainty modelling concepts, which basically differ in the assumptions that are made with 
respect to the uncertainty characterization. Stochastic uncertainty modelling is most frequently applied and is 
characterized by probability density functions (pdf’s) or simply by means and (co)variances. Typical approaches 
are the Bayesian and the Monte Carlo Markov Chain methods. Alternatively, a set-membership or bounded-error 
characterization, as opposed to a stochastic characterization, is favoured when assumptions about distribution or 
estimates of mean and covariance cannot be satisfactorily tested, as with small data sets or heavily structured 
(modelling) errors. The bounded-error characterization is in essence deterministic. Both approaches, using tools 
as DREAM, GLUE, exact and approximate bounding, MCSM and a pavement-based technique, were tested on a 
real-world example. The example, based on Wasson’s (1994) sediment yield – area data and after a log-log 
transformation of the data, is a linear static problem with two parameters. 

There is a continuing debate on the use of formal and informal uncertainty methods in hydrology (see e.g. Beven 
et al. 2008). GLUE has been criticized especially for the use of an informal likelihood function and a subjective 
choice of threshold to separate behavioural (feasible) and rejected (infeasible) parameter vectors. It has also been 
pointed out (Qian et al., 2003) that the inefficient sampling inherent in naive Bayesian estimation techniques of 
this type is very likely to yield uninformative results for the posterior distribution of the parameters. On the other 
hand, it has been known for a long time that assumptions about the residual errors in formal approaches are often 
violated, making inference unreliable (Kuczera, 1983). Studies have compared GLUE using an informal 
likelihood measure with a method using a formally correct likelihood function (see e.g. Freni et al., 2009). Vrugt 
et al. (2009a) conclude that although GLUE and a statistically formal (DREAM) Bayesian approach can give 
very similar results, the main advantage of a formal approach is that it allows to disentangle different 
contributions to total uncertainty. The set-membership approach to uncertainty modelling and analysis, as an 
alternative to the stochastic uncertainty modelling approaches, has a firm theoretical basis, see Walter (1990), 
Norton (1994, 1995), Milanese et al (1996) and Keesman (2011). In real applications, the critical point, however, 
is the choice of the bounds on the error vector. 

The stochastic and set-membership methods were evaluated with respect to (i) Accuracy or precision of 
methods, (ii) Time and computational requirements, (iii) Skill requirements and (iv) Range of applicability. 
From an application point of view, we conclude that uncertainty analysis is of paramount importance in scenario 
studies of (complex) environmental systems if one wants to implement robust measures. It is also worthy to be 
eclectic in methods for uncertainty analysis, because any method makes assumptions and it is therefore valuable 
to consider uncertainty quantification under different conditions. 
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1.  INTRODUCTION 

Nowadays, uncertainty analysis is considered as an essential part of environmental model building. The 
objective of this paper is to present and evaluate stochastic and set-membership uncertainty modelling concepts, 
described below, on a real-world example of river sediment yield modelling.  

Stochastic uncertainty modelling is most frequently applied and is characterized by probability density functions 
or simply by means and (co)variances. Given these concepts, we can compute the error propagation either from 
output error to uncertainty in the parameter estimates or from uncertainty in the parameter estimates to prediction 
uncertainty, possibly extended by structural modelling uncertainty. 

With set-membership identification (see overviews by Walter, 1990; Norton, 1994, 1995; Milanese et al, 1996), 
the aim is not to find a single vector of optimal parameter estimates, but a set of feasible parameter-vector values 
that are consistent with a given model structure and data with uncertainty with specified bounds. This approach 
is favoured when assumptions about distribution or estimates of mean and covariance cannot be satisfactorily 
tested, as with small data sets or heavily structured (modelling) errors. In general, a non-connected vector set 
with non-convex subsets of feasible parameter vectors may result. 

Our uncertainty modelling starts with the specification of error terms in the mathematical model. In the state-
space modelling framework, it is usual to distinguish between process noise, that affects the dynamics of the 
system, and measurement noise (e.g. Keesman, 2011). However, in this paper the focus is on modelling the 
output error and its effect on the uncertainty in the parameter estimates and the corresponding model predictions. 

The real-world example to be examined below focuses the interpolation and prediction of sediment yield as a 
function of river catchment area. It uses Wasson’s (1994) data, collected over many catchments in Australia, and 
a power-law model of the relationship between sediment yield and area. After log-transformation of both 
variables the model becomes a linear regression with two unknown parameters.  

2.  DEFINITIONS AND NOTATION 

Our starting point is the following general non-linear model 

( )= +y F eϑ  (1) 

where y∈ℝN contains the observed output data, F(ϑ) is a non-linear vector function mapping the unknown 
parameter vector ϑ∈ℝm into a noise-free model output ŷ  and e is the error vector. Naturally, we may interpret 

F(ϑ) as a vector containing one or more output trajectories from a, possible temporal-spatial, simulation model.  

2.1. Stochastic uncertainty modelling 

Assuming that components of vector e are independent and identically distributed (i.i.d.) observations of the 
output error, with probability density function (pdf) (ݕ|ߴ), the objective function (likelihood function) is (ܡ│ߴ)ܮ = ∏ ேୀଵ(ߴ|ݕ)  (2) 

Normally, the maximisation problem, within maximum likelihood estimation (MLE) procedure, is solved with a 
numerical optimisation algorithm. By using some Monte Carlo Markov Chain (MCMC) based sampling in the 
optimisation step, it is also possible to estimate the uncertainties of the parameter estimates in addition to a 
single parameter vector giving the “best” fit. In the stochastic uncertainty framework, it is also possible to utilise 
prior information about the parameter estimates, leading to a Bayesian approach. (ܡ|ߴ)ܮ = ܿ ∙ (ߴ) ∏ ேୀଵ(ߴ|ݕ)  (3) 

with (ߴ) the prior pdf and c a normalising constant, 

2.2. Set-membership uncertainty modelling concept 

Within the set-membership framework, the information uncertainty vector e is assumed to be bounded in a given 
norm. In what follows, it is assumed that it is piece-wise bounded, so that 

ε≤∞e
 (4) 
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where ε is a fixed positive number. The related measurement uncertainty set (MUS), containing all possible 
model-output vectors consistent with the observed output data and uncertainty characterization (4), is defined as 

Ωy := { y~ ∈ℝN : || y− y~ ||∞≤ε} (5) 

The set 

Ωϑ := {ϑ∈ℝm : || y−F(ϑ)||∞≤ε} (6) 

then defines the feasible parameter set (FPS). The set-membership estimation problem is to characterize this 
feasible parameter set, which is consistent with the model (1), the data (y) and uncertainty characterization (4). 
The image set related to the FPS, which is an unfalsified model output set and also called the feasible model 
output set (FMOS), is then defined as: 

Ω ŷ  := { ŷ ∈ℝN : ŷ  = F(ϑ); ϑ∈Ωϑ} = Ω ŷ ∩Ωy (7) 

Hence, instead of trying to find an optimal value of the parameter vector as in ordinary least squares or in a 
statistical estimation procedure, the goal is to find the set of feasible parameter-vector values consistent with the 
model (1) and the data, subject to specified bounds on the error between model output and output observations 
(4). This approach avoids any assumptions beyond the model-output error bounds. 

3.  A REAL-WORLD EXAMPLE 

In the real-world example we examine a data set collated by Wasson (1994) of sediment yields versus catchment 
area, see Figure 1. The Wasson (1994) data, was collated from numerous studies of long-term sediment yields in 
south east Australia. The data shows a high level of scatter – a function of (i) high inherent spatial and temporal 
variability of sediment yield across south east Australia; and (ii) the use of a range of different underlying 
methods to estimate sediment yields. Our particular interest in the analysis of this data is to identify likely upper 
and lower bounds of plausibility for sediment yield estimates.  

 
Figure 1. Data set (from Wasson, 1994), left panel: original space, and right panel: log-log space 

Presume that the catchment area-sediment yield data can be described by the power law: kY aA= , where a and k 
are unknown parameters. After applying a natural logarithmic transformation of the power law we obtain, 

ln ln lnY a k A= +  (8) 

from which we define α1 := ln a and α2 := k. Hence, in terms of the general non-linear regression model for each 

area with index i: [ ] 1

2
( ) 1 lni i iF F A

α
ϑ ϑ

α
 

= =  
  . 

3.1. Stochastic uncertainty characterization of sediment yields 

Least-squares estimation: It has been shown in Keesman et al. (2010) that, using ordinary least-squares 
estimation and using more or less standard assumptions about the errors, that is the errors in e are i.i.d and 
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Gaussian, or at least have a symmetrical distribution, and Ai error-free, the parameters in (8) and the 
corresponding covariance matrix is given by 

( ) 12
ˆ1 2

0.0353 0.0012
ˆ ˆ ˆ3.3125, 0.9177;

0.0012 0.0020
T

eϑα α σ
−  

= = Σ = =  
 

F F
 (9) 

Consequently, the predicted sediment yield and the prediction error variance for a specific area Ai can be found 
from 

1

2

ˆˆln [1 ln ]
ˆi i iY F A
α

ϑ
α
 

= =  
  ,  

2
ˆ ˆˆln

1
[1 ln ]

ln
T

i i iYi i
F F A

Aϑ ϑσ
 

= Σ = Σ  
   (10) 

with 1α̂ , 2α̂  and ϑ̂Σ  given in (9). 

For instance, using (10), for an area of exp(−8) = 3.35 10-4 km2 we find a predicted log-transformed sediment 
yield of −4.03 ± 0.38, that is 0.02 ± 1.46 t/a. The calculation of the covariance matrix in (9) is mainly determined 
by large values in F and thus related to very small and very large catchment areas. This will ultimately lead to 
underestimated errors in the interpolated sediment yields. Hence, more realistic uncertainty modelling is needed. 

Bayesian inference: In what follows, it is assumed 
that residual errors of the model are independent, 
identically and Gaussian distributed. In Eq. 3 vague 
uniform priors are used for model parameters α1 [0, 
100] and α2 [0.5, 1.5] as well as for standard 
deviation of the residual error σe [0, 10] that was 
inferred from the data at the same time with model 
residuals. Two observations were removed from the 
data sets, as they seemed to be outliers, see red 
circles in Figure 1b. Using the Differential 
Evolution Adaptive Metropolis algorithm 
(DREAM) (Vrugt et al., 2009b), Figure 2 shows the 
marginal posterior distributions of the variables and 
Figure 3 shows the resulting uncertainty bounds. It 
is essential to check whether the initial assumptions 
about the residuals are valid. In our example, the 
residuals pass the normality test and there is no 
clear heteroscedasticity in the residuals.  

3.2. GLUE 

In the Generalized Likelihood Uncertainty 
Estimation (GLUE) analysis of Beven and Binley (1992) R2 was used as a fit criterion. 100000 parameters sets 
were evaluated and the threshold was selected such that best 1% (1000) of the sets was considered behavioural. 
Figure 4 shows the behavioural parameters values and Figure 5 shows the resulting 95 % uncertainty bounds. 

3.3 Set-membership uncertainty characterization of sediment yields 

 
Figure 3. Uncertainty (95 %) bounds using DREAM. 
Solid lines present lower and upper total uncertainty 

bounds and dashed lines parameter uncertainty, 
respectively.  
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In what follows, the results are shown for an error bound of 5, thus ε = 5. Within the set-membership approach, 

and given Eq. 4 and 8, we derive the following inequalities 

1 2ln ln ln , for 1,...,i i iY A Y i N− ε ≤ α + α ≤ + ε =      (11) 

Graphical solution: Notice from (11) that for each measurement pair (Yi , Ai) two linear inequalities appear. 
Hence, the sharp constraints are given by: 1 2 ln lni iA Yα + α = + ε  and 1 2 ln lni iA Yα + α = − ε , for i =1, ..., 

N, which in this case define two lines in the two-dimensional parameter space. In Figure 7 the red lines are 
related to the upper bounds, while the green are related to the lower bounds. 

Orthotopic outer-bounding: The hypercube aligned with each of the axis in the parameter space that tightly 
outer-bounds the FPS is found by solving 2m LP problems of the form 

1

2

1 2

1 2

min/ max

s.t. ln ln

( ln ) (ln ) for 1,...,

T

i i

i i

f

A Y

A Y i N

α 
 α 

α + α ≤ + ε
− α + α ≤ − − ε =  

      (12) 

with f = [1  0]T or [0  1]T, and thus we have to solve 
two minimization and two maximization problems. 
Each of these solutions defines a vertical or horizontal 
line in the two-dimensional parameter space. This 
result is graphically presented by the blue box outer-
bounding the FPS in Figure 6. Notice that this box can 
be rather conservative, especially when there is a 
strong correlation between the parameter estimates. 

Parallelotopic outer-bounding: In addition to the 
observation that each measurement provides two 
parallel lines in the parameter space, it can be verified 
from Figure 6 that each couple of two measurements 
gives a parallogram in the two-dimensional parameter 
space. Hence, processing all 

2

N 
 
 

 combinations of 

measurements, which was done sequentially, and 
saving the one with the smallest volume led to the 
parallelogram define by the black lines in Figure 6.  

Monte Carlo Set-Membership: Sampling the 

 
Figure 5. Uncertainty (95 %) bounds using GLUE. 

Dashed lines present lower and upper total uncertainty 
bounds and the solid blue line the median of the 

interpolation. 

Figure 6. MCSM approximation of the feasible 
parameter set (blue dots), orthotopic (blue box) and 
parallelotopic (black parallelogram) outer-bounding 

set related to an error bound of 5 

 

 
Figure 4. Behavioural parameter sets using 
GLUE. Blue dots show the “best” parameter 

values. 
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parameter space from the box ℬ = [0, 10] × [0, 2] (5000 times) and evaluating the corresponding response with 
respect to the constraints given in (11) led to a finite set of feasible parameter vectors. In Figure 6 each feasible 
parameter vector from this procedure is presented by a blue dot, which all together give an inner approximation 
of the FPS.  

As expected, the FPS indicated by blue dots and 
constrained by lower (green) and upper (red) 
bounds contains the min-max estimate (α1 = 
3.5237 and α2 = 0.9072) and it contains the FPSs 
related to error bounds smaller than five. 
Increasing the error bound will thus lead to a 
larger FPS. Hence, the FPS directly reflects the 
larger uncertainty considered in the data.  

The set-membership model output results related 
to an error bound of 5 are presented in Figure 7. 
Notice that the FMOS does contain almost all of 
the measurements and thus we may consider 
these results as appropriate for further evaluation. 
Notice from Figure 8 that the uncertainties 
increase for small and for large catchment areas 
(A). For instance, the (interpolated) bounds could 
be used in the identification of an erosion model, 
using bounded information, i.e. basically taking 
into account constraints instead of point 
measurements. 

Pavement: For the pavement-based 
approximation we refer to Moore (1992) and 
Jaulin and Walter (1993). The algorithm 
subdivides an initial parameter hypercube (or in 
our case a box) into two along its longest side. It 
then calculates the bounds of an objective 
function for that box of parameters. Boxes with 
bounds that are completely within the required 
bounds are kept, and those completely outside the 
bounds are discarded.  Boxes with bounds that 
cross the required bounds are added to a queue of 
boxes to further refine. The process keeps going 
until a tolerated maximum box width is reached 
(effectively a precision), or a number of iterations 
are completed. The objective function and bounds 
are chosen to match the other set-membership 
methods, that is the residuals with maximum 
magnitude must lie within [−5, 5], see for results 
Figure 8. 

4.  DISCUSSION AND CONCLUSIONS 

Both the Bayesian and set-membership estimation approaches have a solid basis, as all the assumptions are 
transparent and they can (and should) be checked afterwards. In real applications, the critical point, however, is 
the choice of the pdf’s and the choice of bounds on the error vector e. 

Accuracy: The accuracy of DREAM/Bayes depends on how well assumptions for example with respect to 
homoscedasticity of the residuals are fulfilled. The use of priors is both the strength and the weakness of the 
Bayesian inference method as narrow priors will dominate the results if there is not enough information in the 
data itself to identify the model parameters. The GLUE results depend on the user-defined threshold and 
objective function. In GLUE output uncertainty is a weighted average of results of all behavioural parameter 
vectors. Weights are based on likelihood measure of each behavioural set, while in MCSM the output 
uncertainty is directly evaluated from the feasible parameter vectors, thus without resampling. 

For estimation problems linear in the parameters, thus with F(ϑ) = Fϑ, exact solutions in terms of vertices and 
edges exist for the characterization of the FPS. Paving algorithms are theoretically capable of arbitrary precision.  

Figure 7. Feasible model output bounds from  MCSM 
(upper bound: green +; lower bound: blue +) and from 

an outer-bounding box approximation related to an error 
bound of 5. 

 
Figure 8. Collection of infeasible-indeterminate-feasible 

boxes as a result of a pavement algorithm. 
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Computational requirements: DREAM is an efficient MCMC sampler, but for large problems (many parameters) 
may still require a long time to converge. GLUE is easy to use but as it uses naive MCMC it may be inefficient. 
Although theoretically the exact solution of linear set-membership estimation problems can be found, in practice 
it may be a hard problem due to the large complexity of the FPS. Hence, in practical applications approximate 
solutions, with limited computational requirements, may be more appropriate. A pavement algorithm requires 
the specification of initial parameter bounds, a way to run the model with interval parameters and obtain bounds 
on the objective function.  

Skill requirements: DREAM is available in R and Matlab. However, the correct selection of the likelihood 
function requires good knowledge of the statistical properties of residuals and is thus case dependent. In GLUE 
there are subjective decisions that have to be made and these decisions will have an effect on the final results. 
For exact/approximate bounding tools are available in Matlab. These tools are easy to use. The key problem is 
the choice of appropriate error bounds. As MCSM is essentially based on simulations and a binary selection 
criterion, it is easy to understand. Paving algorithms are easy to understand, but a dedicated tool is required to 
implement the algorithm.  

Range of applicability: DREAM and GLUE are both well suitable for all kind of calibration problems but time 
usage may be a problem for highly distributed models that need lots of time for a single function evaluation. 
MCSM is widely applicable, even to spatially distributed models with thresholds and other strong non-linearities. 
The basic limitation is the computational effort needed to provide a reasonable approximation of the FPS and 
FMOS. Paving algorithms are theoretically usable for any model and objective function. However, bounds on 
the objective function must be specified beforehand, and an appropriate method of calculating those bounds is 
required. 

In conclusion, we can say that the uncertainty bounds given by different methods vary and thus there is a need 
for careful selection of the method used. Preferably, the method should have a firm theoretical basis. The user 
should understand this theoretical basis, so that results are not misinterpreted and abused. In the example, linear 
case with two parameters, there were no computational difficulties in using different methods and thus we 
recommend to use either Bayesian inference or an exact bounding algorithm. On the other hand, GLUE is 
worthy of consideration when it is difficult to fulfil residual assumptions. Indeed it could be used as a screening 
method to gain some initial understanding of uncertainties. 
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