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Abstract: Water resources engineering and hydrology focus predominantly on physically-based models
to characterize the dynamics of the physical, social and economic processes. Such a high fidelity models
are usually computationally expensive and cannot be used in problems requiring hundreds or thousands of
model runs to be satisfactory solved. Typical examples include optimal planning and management, data
assimilation, and sensitivity analysis. An effective approach to overcome this limitation is to perform
a top-down reduction of the physically-based model by identifying a simplified, computationally effi-
cient emulator, constructed from and then used in place of the original physically-based model in highly
resource-demanding tasks. In this work we propose a new data-driven Dynamic Emulation Modeling
(DEMo) approach that combines the advantages of data-based modeling in representing complex, non-
linear relationships, and preserves the state-space representation, which is both a precondition to infer an
ex-post physically meaningful interpretation of the emulator and particularly effective in some applica-
tions (e.g. optimal management and data assimilation). The core mechanism of the proposed approach
is a novel variable selection procedure based on a class of tree-based methods that is recursively applied
to a data-set of input, state and output variables generated via simulation of the physically-based model.
The approach embodies some very important properties: it is fully automated, independent on domain
experts and system knowledge, and suitable for non-linear processes; it has a high potential in terms
of complexity reduction; and, finally, it provides an ex-post interpretation of the emulator structure. The
approach is demonstrated on a real-world case study concerning the optimal operation of a selective with-
drawal reservoir suffering from algal blooms due to thermal stratification. The emulator, which is identi-
fied on a data-set generated with the 1D coupled hydrodynamic-ecological model DYRESM-CAEDYM,
shows good performances in emulating the dynamic behaviour of the original model in characterizing the
chlorophyll-a concentration in the euphotic layer.
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1 BACKGROUND

An emulator is a computationally efficient, low-order approximation of a physically-based model. De-
pending on whether the emulator preserves the dynamic nature of the original model or is a static relation-
ship between inputs, (states), and outputs, two methodological approaches can be distinguished (Castel-
letti et al., 2011): Dynamic Emulation Modelling (DEMo) and non-dynamic emulation modelling. This
latter has been considerably explored in the water resources literature, with applications in the planning of
water distribution networks (Broad et al., 2005), groundwater (Yan and Minsker, 2006) and surface water
resources (Castelletti et al., 2010). Non-dynamic emulators provide a static map of the planning decision
into the objective functions of an optimization problem. As a consequence, they are limited to simulation-
based optimization frameworks, whereas cannot be employed in any control problem, where a dynamic,
yet approximated, description of the immediate-cost associated to each state transition is required.

Dynamic emulators, which maintain the dynamic property of the original model, can be categorized into
structure and data-driven. The former are based on some projection of the high-dimension equations of
the physically-based model onto a lower-dimension space, where the model equations are solved for the
substituted projected states; the latter are based on the identification of the emulator as an I/O relationship
over a data set of input-output samples generated by the physically-based model. The choice for one
approach over the other depends on the level of complexity and non-linearities embedded into the original
model.

Structure-driven dynamic emulators are well developed for linear, quadratic and weakly non-linear mod-
els, while theory is still under development for non-linear models (see Antoulas (2005) and references
therein). A structure-driven emulator is naturally in the state-space form, which makes it directly and
more effectively usable in any management problem, but because of the many difficulties in dealing with
strong non-linearities, structure-driven DEMo has been only relatively adopted in the environmental field
(Crout et al., 2009). Data-driven emulators are more flexible and powerful in characterizing the non-
linear relationships between external drivers and output but usually are in an input-output representation,
which is less efficient for management problems. Moreover, the original input-output representation can
be hardly given a physical interpretation and the final emulator may lack of credibility by stakeholders
and domain experts. Data-driven DEMo has been more extensively explored than its structure-driven
twin in the environmental modelling literature (see van der Merwe et al. (2007) and references therein).

2 DYNAMIC EMULATION MODELLING

This section formulates the Dynamic Emulation Modelling (DEMo) problem and summarize the essential
background material for the subsequent sections, where the novel contribution of the paper is described
and demonstrated.

2.1 DEMo problem formulation

Given a physically-based model M with state and exogenous driver vectors X; and W, the purpose of
a DEMo exercise is to identify a computationally efficient, low-order model (the emulator) on a data-
set appropriately generated via simulation of model M. The emulator must be such that its output y;
accurately reproduces model M’s output Y, but has lower-dimension state and exogenous driver vectors
x; and wy, and takes the following general state-space form:

Xi+1 = ft(Xt,Wtﬂlt) (1a)

ye = hy(xg, we,ug) (1b)
where u; is the control vector, f;(-) a generally non-linear, time-variant, function that models the state
transitions, and h,(-) the output transformation function. Since the emulator is to be used in management
problems formulated as sequential decision-making processes, the model M’s output Y; we want to
reproduce is the immediate cost associated to each state transition, whose aggregation over a pre-selected
time horizon gives the objectives of the management problem (Castelletti et al. (2008) and references
therein). According to the data-driven nature of the proposed DEMo approach, the emulator is identified
on a data-set F of tuples {X;, Wy, uy, Yy, X441 }, with ¢ = 1,..., H, generated via simulation of
model M.
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The adoption of a state-space representation brings some important features: ¢) the emulator is directly
usable for optimal management problems, which require the knowledge of the system’s state, without
subsequently solving a - not always straightforward - minimal realization problem; %) the resolution of
the associated DEMo problem exploits all the information in the data-set F, whereas by using the external
form, the state transitions, however generated by the simulation, are totally ignored; 7iz) the state x; can
be source for reasonable physical interpretations, as practically demonstrated in the case study sections of
the paper; iv) the emulator is generally compact and accurate, since the state x; embeds the same amount
of information contained in several time-lags of auto-regressive terms and exogenous drivers.

2.2 DEMo procedure

Assuming that a well-calibrated physically-based model M is available, the identification of a dynamic
emulator can be performed in five steps (Castelletti et al., 2011):

Step 1. Design of computer experiments (DOE) and simulation runs. Since the DEMo exercise is com-
pletely data-driven, the data-set 7 must be as much as possible informative thus reproducing all possible
model M dynamic behaviours, forced by the widest spectrum of inputs (exogenous drivers W and con-
trols u,;). Technically, the DOE consists in a sampling in the space of the physically-based model inputs
aimed at defining a sequence of simulation runs for model M with the purpose of generating the data-
set F. Considering the severe limitations on the number on runs typically imposed by hydrodynamic-
ecological models, proper techniques can be employed to effectively explore this space. These include
statistical techniques (e.g. pseudo-random binary sequences (MacWilliams and Sloane, 1976)) or expert-
based design (see, e.g., Galelli et al. (2010)).

Step 2. Variable aggregation. The spatially-distributed nature of model M can lead to a large dimension-
ality of the state and exogenous driver vectors. By processing the data in F with a suitable aggregation
scheme, X; and W, are transformed in two lower-dimension vectors Xt and Wt, so that the majority
of the variation in the original vectors is captured. The aggregation scheme can rely on fully automatic
techniques (e.g. principal component analysis (Jollife, 1986)) or can alternatively be based on expert-
based skills (see Galelli et al. (2010)). Eventually, the data-set F is transformed into the lower-dimension
data-set F of tuples {Xt, W, uy, XtH, Y.}

Step 3. Variable selection. Based on the information content of F , model M is further simplified
by selecting the components of X, and W, that will constitute the emulator’s state x; and exogenous
driver w; vectors. Generally, this operation relies on some automated techniques (e.g. variable selection
methods; see Castelletti et al. (2011) and references therein), since X; and W, are often too large to be
handled by a human operator.

Step 4. Structure identification and parameter estimation. In this step, the functions f;(-) and h,(-) are
built. This is a ‘traditional” identification problem, composed of the selection of a suitable model structure
and parameter estimation, performed in a data-driven fashion, based on the information content of F.

Step 5. Evaluation and physical interpretation. Once the emulator has been calibrated, its ability in
reproducing the model M input-output behaviour is cross-validated on the data-set . The final emulator
is physically interpreted based on the analysis of the arguments of eqs. (1a) and (1b).

Once the emulator has been successfully validated against the data and the operator/expert, it is ready to
be employed in the solution of the management problem.

2.3 RVS-IIS algorithm

The core of the proposed approach is the combined Recursive Variable Selection - Iterative Input Selection
(RVS-IIS) algorithms (Castelletti et al., 2011), through which the most relevant variables for the emulation
of the output Y, of the physically-based model M are selected. The RVS algorithm proceeds iteratively
in three steps over each component v of Y. 7) The most relevant variables in explaining v° are selected
(with the TIS algorithm) in the set V; = {X, W, u} of the candidate input variables on the basis of
the information content of the data-set F. This gives the arguments of the component of the output
transformation function (eq. (1b)) associated to v°. ¢7) For each state variable selected in the previous
step, a new run of the IIS algorithm is performed to select the variables relevant to describe its dynamics.
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This gives the arguments of the corresponding component of the vector state transition function (eq. (1a))
associated to the state variable considered. ii¢) If the second step leads to the selection of further state
variables not yet included in x;, the step is recursively repeated until all the selected state variables are
given a dynamic description. Once the RVS-IIS algorithms is over, the arguments of eqs. (1a) and (1b)
are known.

The Iterative Input Selection (IIS) algorithm called at each invocation of RVS is a model-free, forward-
selection method. For a given output variable v°, the IIS algorithm proceeds by first identifying the best
performing input v* in the set V; of candidate variables using an input ranking procedure based on a
statistical measure of significance. Then, given v*, it builds an underlying model 7 (-) to explain v°.
To account for redundancy, IIS repeats the ranking process using the residuals 9° of model /7:(-) as new
output variable 9°. These operations are re-iterated until the accuracy of /(-) does not significantly
improves any further.

The effectiveness of the RVS-IIS strategy strongly depends on the choice of a suitable combination of
the input ranking procedure and the underlying model. The combination adopted must support the ability
of RVS-IIS in accounting for significance and redundancy: RVS-IIS must be effective in selecting only
the most relevant input variables, while trying to avoid the inclusion of redundant ones, which would un-
necessarily add to the emulator complexity. Moreover, the ideal algorithm should account for non-linear
dependencies, as hydrodynamic-ecological models are usually characterized by complex, non-linear be-
haviours with multiple coupled variables. Finally, the algorithm must be computationally efficient, since
in a complex and spatially-distributed domain the number of candidate variables is generally considerably
large.

Among the different classes of underlying model, we here propose to resort to Extremely Randomized
Trees (Extra-Trees), a tree-based regression method proposed by Geurts et al. (2006) that can provide
these required features. As a consequence, the choice of the input ranking procedure has fallen on a
method based on Extra-Trees: in fact, as proposed in Wehenkel (1998), Extra-Trees can also be used as a
ranking procedure, since their particular structure can be exploited to infer the relative importance of the
input variables.

3 CASE STUDY: TONO DAM

The case study concerns the optimal operation of Tono Dam, an artificial water reservoir located at the
confluence of Kango and Fukuro rivers in Western Japan. The dam, whose construction works are to be
completed in early 2012, will form an impounded reservoir with a gross capacity of 12.4 x 10 m®. The
main purpose of the dam is to provide water to a downstream agricultural district. However, the water
impoundment behind the dam is very likely to suffer from algal blooms due to thermal stratification, and,
moreover, the dam operation is expected to alter the natural downstream water temperature pattern. To
account for these water quality objectives, the reservoir will be equipped with a Selective Withdrawal Sys-
tem (SWS), which enables water releases at different depth and blending, thus allowing for a mechanical
control of the outflow temperature.

To demonstrate the effectiveness of the DEMo approach, this paper illustrates the identification of a
dynamic emulator over the sample data set obtained from a 1D physically-based model, which is used to
compute the water quality objective related to algal blooms'. Given the sequential nature of the decision-
making problem underlying the optimal reservoir operation, this objective is formulated as the expected
discounted integral of the immediate cost associated to each state transition, and it is thus the output
variable considered in the DEMo exercise, i.e.

91" = Chlaf 2)

where ChlaF is the average concentration of Chlorophyll-a [pg Chla/L] in the time interval [t — 1,¢) in
the euphotic zone, defined as the first three meters below the water surface.

Since the reservoir is created by damming two rivers in a narrow section of their course and will have
a relatively small surface area, vertical phenomena are supposedly dominating and the 1D coupled

IWater quantity dynamics is described by a simple mass balance equation and does not require an emulator.
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hydrodynamic-ecological model DYRESM-CAEDYM originally used in Yajima et al. (2010) is adopted
in this study. The model exogenous driver vector W, includes 50 components, accounting for the main
hydro-meteorological processes and water pollution loads, while the control vector u; has two compo-
nents, the release decisions u; > and u; '® [m?/s] from the siphons located at -3 and -13 m depth from
the reservoir surface. As for the state vector X, a total of about 102 computational cells for the 10 state
variables/cell gives ~ 103 components for X;.

4 APPLICATION RESULTS

This section provides a step-by-step description of the results obtained by applying to Tono Dam case
study the DEMo procedure implementing the tree-based RVS-IIS algorithms.

4.1 DOE and simulation runs

With the purpose of spanning as much as possible the model state-control space, a set of trajectories for
W, and u; are designed. As for Wy, the time series of observational data over the period 1995-2006
are available, and, considering both the variety of conditions they include and the length of the series,
no further data generation is required. Concerning u;, 100 control scenarios are generated as pseudo-
random sequences and the DYRESM-CAEDYM model is run with 1 m vertical grid resolution and a
simulation step of 1 min. The simulated data, sampled with a daily time-step, are finally stored in the
data-set F of tuples {X;, Wy, uz, X¢41, Yt }, with dimensionality equal to ~ 103, 50 and 2. The first
half of the ~ 4.50 - 10° generated tuples is used for the variable selection process, while the second for
model calibration and validation.

4.2 Variable aggregation

An expert-based aggregation scheme is employed for the state vector X;. Among the different layers of
the model spatial domain, the five layers located at -3, -7, -13 m of depth and at the bottom and sediments
outlets are selected, as they are considered to be representative of the euphotic, middle and benthic zone.
For each selected layer, all the state variables are considered, so that the original ~ 10® components are
reduced to 50. The exogenous drivers in W are already lumped in space and do not require any further
aggregation. The dimensionality of the first three vectors composing the data-set F is thus respectively
equal to 50, 50 and 2. This gives a total of 102 candidate variables to appear in the emulator.

4.3 Variable selection

The elementary operation in the tree-based RVS-IIS algorithm is the selection of the most relevant vari-
ables in explaining each component v° of the output Y, namely the immediate cost g;"?. The perfor-
mances of the emulator being built are evaluated in k-fold cross-validation (with k& = 10) using the
coefficient of determination R2, while the algorithm tolerance is set to 10~3. This means that when the
selection of a further variable leads to an increase of R? lower than 10~2, the algorithm is stopped.

The variable selection process for the dynamic emulator of the immediate cost g*’¢ takes two calls of
the RVS-IIS algorithm to single out a state vector x7 “ with 2 components, an exogenous driver vector
w?"" with 4 components and the original control vector. The selected variables are presented in Figure
1. The immediate cost depends on 4) the average concentration of Chlorophyll-a Chla” (i.e. g*9) in
the first three meters below the surface; ) the level h, which, as empirically demonstrated in Yajima
et al. (2010), might be a limiting factor that contributes in containing algal blooms; ¢iz) the exogenous
drivers ¢ (cloud cover), w® (solar radiation) and DOPLF (dissolved oxygen in Kango river) and the
controls © 2 and u~'3, which are all limiting factors of the Chlorophyll-a growth. The only variable
that does not present an explicit physical meaning is the suspended solid concentration ssol} in Kango
river. Numerical results show that the contribution of release decisions is weak and indirect with respect
to the output g%? (AR? = 0.0035 for v 2 and AR? = 0.0045 for v~ '3), which largely depends on the
state variable Chla=3 (AR? = 0.9727). This is probably due to the discrepancy between the reservoir
operational time step (1 day) and the slow dynamics of the Chlorophyll-a growth that is in the order of
few days: controls are changed at a too high frequency to affect directly the algae dynamics.
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Figure 1. Causal network of the variables involved in the emulation of g*9.

4.4 Structure identification and parameter estimation

This step requires to select an appropriate structure (class of functions) for the emulator, which is then
calibrated and validated. Considering the good performances provided by Extra-Trees as underlying
model in the variable selection process, they are adopted with the same setting also in this step. The
final structure of the emulator is thus a cascade of tree-based models, which is validated with a k-fold
cross-validation (with k£ = 2) on the second half of the data-set F.

4.5 Evaluation and physical interpretation

The dynamic emulator performances obtained in k-fold cross-validation are reported in Figure 2, where a
comparison of the trajectories for the output g;"? (as computed by DYRESM-CAEDYM and the emulator)
in one-step ahead prediction is shown. The emulator shows good capabilities in approximating g;"?
behaviour, apart from the under-estimation of largest peaks.

Variable R*

g |ogs17
h

Figure 2. Performance, in 2-fold cross-validation (R?) of the dynamic emulator output transformation
function (1st row) and state transition equation (2nd row), and comparison over the year 1997 between
the output g;"? simulated by DYRESM-CAEDYM (grey line) and predicted by the emulator (black line).

5 CONCLUSIONS
This paper presents a novel approach to the identification of dynamic emulators particularly suitable

for all those high resource-demanding problems, such as optimal management, that might benefit from
a state-space representation of the emulator both in computational terms and for the increased model
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credibility. The core of the proposed approach is the Recursive Variable Selection-Iterative Input Se-
lection (RVS-IIS) algorithm that uses Extremely Randomized Trees as both the underlying model and
the ranking procedure in the selection of the more significant input variables to the emulator. The ap-
proach is demonstrated on a real world case study implementing a 1D (DYRESM-CAEDYM) coupled
hydrodynamic-ecological model of a reservoir: results show that the tree-based RVS-IIS algorithm is
particularly effective in reducing the dimensionality of the original models, while accurately explaining
the output variables. With a proper variable aggregation scheme and in a relatively small number of the
RVS-IIS algorithm iterations, the high-dimensional state and exogenous driver vectors of the original
physically-based models are respectively reduced from ~ 103 (1D model) to 10*.
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