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Abstract: Physicists and engineers are accustomed to seeing the output of a computational model as 
representing a prediction. In this context, predictions are understood to be informed approximations of how a 
system’s dynamics may evolve as a result of the modelled assumptions. In what is generally called inverse 
modelling or optimization, applied mathematicians employ the ability of models to reproduce observed 
behaviours in order to deduce causal relations or to retrodict the system’s past history. However, in the 
modelling of ecological and social processes, scientists (including modellers themselves) tend to be much 
more pessimistic concerning the ability of models to provide reliable predictions, Because of this sceptcism 
prediction is sometimes explicitly excluded from the list of useful model purposes (1).The four principle 
reasons for this scepticism are: a) computational models have a very poor prediction track record; b) most 
model predictions are not testable because of their conditional nature; c) despite the appearance of 
objectivity, model outcomes reflect the modelers’ subjective beliefs and assumptions and d) the view that 
some scientific activities,including computational modelling of social and ecoological phenomena are not 
designed, and should be expected to, provide predictions.   

While we acknowledge that the modelling of physical vs ecological and human processes are different (2-4), 
we suggest that the output of any type of model which is employed as part of a decision-making process 
should be interpreted as a prediction. Our claim is based on the following reasoning. First, prediction should 
not be understood as a forecast of a precise event, instead it should be understood as an estimation of a 
probability distribution which provides bounds on the likelihood of sets of future events. Second, such 
predictions are indispensible for decision making, since they provide the basis upon which available 
alternative options are evaluated and chosen. Third, the predictive power of experts is known to be less 
reliable in certain contexts, than numerical models. Given that prediction is necessary for non-arbitrary 
decision making, it is useful to refocusing the question from whether models provide an accurate prediction 
to whether computational model can outperforms humans as predictors. Fourth, the ability to compare 
prediction vs observation is at the core of the scientific method and dismissing the predictive capacity of 
models prevents blocks the possibility of assessing the relative scientific merits of distinct models. Fifth, 
disregarding the predictive power of computational models prevents their use in inverse modelling. Other 
familiar uses of computational modelling, like deducing causal relations and past system behaviour are also 
logically denied. Sixth, further commonly recognized purposes of numerical modelling, like leaning and 
communication, also rely on the ability of models to predict within acceptable limits: it is pointless to learn 
from a mistaken teacher. Seventh, acknowledging the role of prediction in assessing a model’s scientific 
validity and its impact on decision making forces modellers to accept the responsibility of providing all the 
necessary details of the model so that the reliability of such prediction can be estimated.  

Below we expand on these points. In an attempt to reconcile different views on models, predictions and their 
merit in decision making, we conclude by providing an alternative interpretation of computational models, 
according to which models can be understood as an extension of native cognitive capacities. 
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1. ABOUT PREDICTION 

Three concepts are fundamental to our discussion. First, for prediction we do not mean the specification of all 
the properties of some future behaviour or event.  Instead, prediction involves estimation of a range of 
possible states. In other words, prediction should not be understood as prophecy.  For example, while it is 
widely known that weather forecasts are not reliable past 5-6 days, no one would believe that the temperature 
in Darwin in summer could be 40○C or -40○C with equal probability; as a result no rational person would 
travel to Darwin in the summer with a heavy winter coat. The limited predictability past 5-6 days still allows 
a certain level of effective planning. Second, predictions are conditional (4): any prediction is carried out 
within a context and is valid only within that context. In the above example, the conditioning is given by our 
understanding of tropical climate; should this change, the prediction would no longer hold and would require 
updating. Finally, the effectiveness of a prediction is scale-dependent (5). For example, while the geophysical 
community is today sceptical about its ability to provide accurate prediction on where and when large 
earthquakes can occur, they are nevertheless able to predict the broad geographical areas in which large 
earthquakes can be expected. While this kind of predictability seems to offer little to planning (6), it still has 
considerable practical impact in deciding, for example, in which geographical areas expensive anti-seismic 
constructions methods are necessary and where they are not.  

Once understood in these terms, prediction becomes an integral part of any decision making process: 
formulating a plan implies choosing among potential alternatives and envisaging (=predicting) which one is 
more likely to deliver desired outcomes.  

2. WHY IS PREDICTION NECESSARY 

Much criticism of the value of computer models as predictive tools is based on the assumption that a 
prediction is a desirable, but not a necessary result of scientific research. More specifically, the core claim is 
that  prediction is an ideal or discretionary input to, rather than a requirement for, decision making. Our view 
is that prediction is an essential component to any planning and that it is implicit even in approaches which 
claim not to require it.  When understood as described in the previous section, prediction becomes an integral 
part of any non-arbitrary decision making process, whether formally at an organisational level or informally 
at an individual level. Prediction has a role, implicitly or explicitly, in formulating a plan and assessing which 
avenues should be followed. Formulating a plan implies choosing among potential alternatives and 
envisaging (=predicting) which one is more likely to deliver desired outcomes. Similarly, a decision will 
inevitably involve commitment to the exclusion of a range of alternative possible futures.  Even the most 
straightforward decisions exclude a vast range of irrelevant or unlikely alternatives.  This exclusion involves 
judgments with respect to future states of affairs.   

The same applies to the implementing a plan: effective planning requires some sort of expectation of a 
system’s future behaviour and of the outcome of available actions. Even when facing a very complex 
problem, we are rarely in a state of complete ignorance: some expectation on system behaviour and on the 
level of risk arising from uncertainty is usually available and it is on this expectation that most decisions are 
taken. In everyday life, humans use models, which are mental or formal representations of reality, to generate 
these expectations.   

If we were to accept that a prediction is essential to any decision making, then the crucial question shifts from 
‘can model predictions be trusted?’ to ‘how do model compare to other approaches to prediction?’.  

3. HUMAN VS MODEL PREDICTION 

We have shifted our attention to the core question of what tools provide the most reliable prediction given the 
problem at hand. Notice that this question is problem dependent, not only because different problems may 
require different approaches, but also because the most accurate prediction is not necessarily the most 
reliable. Together with using numerical models or other computational tools, predictions can be provided by 
experts, local knowledge, or participatory settings. It is thus important to compare the predictive performance 
of models against alternative approaches on the core items of criticisms discussed above: a) prediction track 
record; b) lack of testability due to their conditional nature and c) inherent subjectivity.  

We are aware of only one study in which a comparisons of predictive accuracy of model vs alternative 
methods has been carried out (7). In this study, on average, statistical methods outperformed experts. Only a 
very small number of experts were able to provide reliable predictions. Importantly, their ability seems to 
stem from reasoning style and attitude, rather than mere knowledge and technical ability. The generally poor 
performance of experts as predictors is confirmed by the available literature on the logical and attitudinal 
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fallacies which even experts display for simple dynamical problems. This should warn us that it is probably 
unwarranted to expect humans to mentally predict the behaviour of highly complex systems in a consistent 
and reliable manner (8-15).   

On the other hands, some evidence suggests that elders show a marked improvement in addressing problems 
as complex as social dilemma compared to younger (higher IQ) groups (16). This suggests that some skills 
can be learned even informally via life experience and naturally acquired wisdom, especially in regards to 
dynamical processes which are more closely related to social and interactional factors.  

The core question underlying this work (‘how do models compare to other approaches to prediction?) is 
ultimately an empirical one. The evidence from the cognitive psychology and the modelling literature, 
according to which models can help overcome some of the cognitive limitations which hamper human ability 
to predict the behaviour of complex dynamic systems (17, 18), should be tested experimentally on a large 
scale. 

Human beings invest considerable effort in predicting the future and studying the past, but considerably less 
in comparing the two: in the rare cases in which predictions are validated again actual occurrences it is 
difficult to draw clear conclusions, given that it is not obvious what criteria should be employed to compare 
complex, chaotic dynamics. This suggests a promising direction of research, including for historical analysis 
and laboratory experiments. 

4. WHY A MODEL SHOULD BE BETTER AT PREDICTING THAN AT EXPLANING 

One counterintuitive result of our discussion is our claim that prediction in computational models is more 
reliable than retrodiction.  On reflection, this is a straightforward result of the nature of computational 
models.  However, recognizing this fact should cause us to think carefully about the explanatory value of the 
kinds of retrodictive accounts of complex systems which we derive from computational models.   

To simplify our discussion, let’s assume we have a model M and that the model is ‘structural’ in the sense 
that it represents our understanding of the dynamics of a process P (extension of the discussion to non 
structural models can be addressed by following the line of argument in (19)). 
 
Models can be used in forward of inverse mode. Let’s first consider the forward mode. At time t0 we collect 
some data ܦ௧బ about P and we use M to assess what may happen in the future at time tn.  This model use is 
called forward since it respects our perception of the ‘arrow of time’ (causes lead to effects) and leads to a 
prediction of ܦ௧. Alternatively, we may wish to assess what may have happened in the past at time t-n. Since 
it attempts to reverse the arrow of time, this use of modeling is often referred to as ‘inverse’ modeling (20, 
21) and leads to a retrodiction of ܦ௧ష.  
 
In an ideal case, the retrodiction would be carried out with an inverse model M-1 such that M-1(out)=in, where 
in refers to the input and out=M(in) to the output of M, respectively. Unfortunately, inverse models such as 
M-1 can be written explicitly for only a very small set of forward models M: most inverse engineering and 
scientific problems need to be solved by iterative methods in which M is run with sets of inputs in until a 
reasonable match between M(in) and the expected output, ܦ௧బ in our case, is found. The procedure which 
allows us to recover ܦ௧ష from M and ܦ௧బ is called inversion, optimisation, or regression, depending on the 
discipline (20, 21). Here we will call it inverse modeling and will call this procedure MInv.  
 
Assessing the effectiveness of a computer model in predicting or retrodicting can thus be cast in terms of the 
reliability of the two processes M (prediction) and MInv (retrodiction).  By ‘reliable’, we mean the following: 
given the model output of the forward process (prediction, ܯ௧) and of the inverse process (retrodiction, 
௧షܯ

ூ௩), we ask which one is likely to be closer to the states of the ‘real’ process ܦ௧ష and ܦ௧, respectively.  
 
Let’s begin by considering deterministic models. At time t0 we make a set of observations ܦ௧బ and we use this 
information to parameterize our model M. The ‘real’ process P proceeds and at time tn we make a new set of 
observations ܦ௧. Because the model M is not exact, the prediction of M at time tn  ܯ௧≠ ܦ௧ and we call the 
prediction error Ep= |ܯ௧, ܦ௧ |. Other runs of M, starting with different initial conditions in ܵ௧బ (ܦ௧బ

′  (௧బܦ≠
generate different predictions in ܵ௧. 
 
Similarly, the inverse process MInv allows us to retrodict from ܦ௧బ in order to recover ܦ௧ష. As explained 
above, this is an inverse process carried out by iteratively mapping ܵ௧ష into ܵ௧బ via M, until a satisfactory 
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match |ܯ௧బ, ܦ௧బ | is found. Ideally, M should map ܦ௧షinto ܦ௧బ so that E’p =|ܯ௧బ, ܦ௧బ |=0. Of course we cannot 
expect this match to be exact. The same approximations (or errors) which prevent M from modeling P 
exactly, and which are responsible for  Ep= |ܯ௧, ܦ௧ |≠0, are likely to imply E’p= |ܯ௧బ, ܦ௧బ |≠0. As a 
consequence, it is likely that a point ܦ′௧ష in ܵ௧ష (ܦ′௧ష ≠ ܦ௧ష) may generate a prediction at time t0 for 
which |M(ܦ′௧ష), ܦ௧బ |<|M(ܦ௧ష), ܦ௧బ |. The point ܦ′௧ష for which |M(ܦ′௧ష), ܦ௧బ | is minimum will be chosen 
as retrodiction. The error in the retrodiction will then be Er =|M(ܦ′௧ష), ܦ௧బ |≠0. If M is non linear and 
‘complex’, the magnitude of Er and Ep may vary considerably as a function of the location of the 
parameterization in ܵ௧ష and ܵ௧బ, but we have no a-priori reason to expect Er < Ep. This is the crucial message 
of this work and we will address it again below.  At this point, it is important to emphasize that Er arises from 
the same process which generates Ep and that the relative magnitude of Er  and Ep cannot be deduced a-priori.   
 
Two further problems, which affect any real world modeling exercise, complicate the inverse modeling MInv: 
a) MInv does not necessarily have a unique answer and b) MInv can be computationally very expensive.  
 
‘Non uniqueness’ or ‘equifinality’ is the property of a system wherein, under certain conditions, families of 
input parameters can produce the same model output.  Non-uniqueness is a feature of inverse modeling but 
not of forward modeling, the outcome of which under ordinary circumstances is deterministic. Non-
uniqueness affects retrodiction: even if an exact match |ܯ௧బ, ܦ௧బ | =0 can be achieved (that is even if the 
model allows to match the current observations perfectly), we are unable to differentiate among the 
(potentially infinite) number of solutions ܦ′௧ష  which provide the match. 
 
The previous argument can easily be extended to non-deterministic models. Non-determinism in M implies 
that the output ܯ௧, obtained by running M initialized with ܦ௧బ, is not unique. A non-deterministic outcome 
is obtained by using random perturbation in the input parameters, thereby generating artificial non-
uniqueness in the forward modeling. As a result, the set of input ܦ′௧ష in ܵ௧షleading to acceptable measures 
of |ܯ௧బ, ܦ௧బ | adds to the uncertainty resulting from non-uniqueness. 
 
Finally, as we mentioned above, M can be computationally very expensive.  In many real world applications, 
this implies that M cannot be run as many times as the iterative process MInv would require. This, in turns, 
adds further errors to |ܯ௧బ, ܦ௧బ | and, as a result, potential further errors in Er.  
 
If we accept that Ep represents the error in prediction and Er the error in retrodiction, the previous analysis 
suggests that a) Er is inextricably related to Ep, b) there is no reason to assume that in general Ep> Er and c) in 
practice, it is more likely that Er> Ep as a result of non-uniqueness and the computational effort which may 
prevent the inverse process MInv to run to completion. This leads to the unintuitive conclusion according to 
which, in the absence of additional information, we should trust a model prediction more than a model 
retrodiction.   
 
We can rephrase the conclusions of this section. If we believe we should not trust a model to provide a 
reliable prediction, we should be even less willing to trust that model to give us a reliable explanation of past 
events or causal paths. This conclusion is widely accepted in engineering and applied mathematics: no 
practitioner would trust the result of an inverse modelling exercise carried out via an unreliable forward 
model. Curiously, in complex model applications, including ecological and social modelling, the opposite is 
believed, practitioners rely in the interpretation of past events obtained via the use of model for which they 
do not trust the forecast.   
 

5. MODELS AS LEARNING AND COMMUNICATION TOOLS 

Models can be used as learning tools. For example, modellers learn by reflecting on mapping relations 
between input parameters and outputs and by carrying out a sensitivity analysis of their models based on their 
experience and presumably via something like an unconscious inverse exercise. While experience and 
expertise are important, the accuracy of a researcher’s deliberations, as we have seen in the previous section, 
depends crucially on the reliability of the forward model. 
 
Not all learning that results from using computer models needs be so formal. Let’s take an analogy often 
employed to explain the role of numerical models in complex processes: the flight simulator. Complex socio-
ecological models, for example, offer decision makers the same opportunity offered by flight-simulators to 
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trainee pilots: they provide the opportunity to test policy initiatives in the safe world of virtual simulations. 
However, it is reasonable to expect that flight-simulators will provide effective training only in so far as the 
flight-simulator simulates well, that is, only in so far the flight-simulator effectively predicts how the real 
plane will behave under similar circumstances. We have no reason to believe that a pilot trained on an 
inaccurate flight simulation should learn how to handle a real plane in the real world. Similarly, there is no 
reason to believe that a decision maker should improve his/her ability to address a real world using a model 
which provides poor predictions with respect to the operation of the real world under the conditions 
embodied in the run of the model.    
 
Some researchers have emphasized other roles for computational models, including communication between 
model developers, users, decision makers and the general public.  However, just like the user of a poor flight- 
simulator model may misjudge the behaviour of a real plane and communicate this misjudged behaviour to 
others, there is no reason why useful, purposeful and pertinent communication obtained via the use of a 
model can happen which is independent of the model’s reliability as predictor. 
 

6. MODELLER RESPONSIBILITY 

Since computational models of complex systems are currently used to support decision making in a number 
of real world problems at the intersection of technical, economic, ecological and social issues, a considerable 
responsibility is placed on the modelling and complex system science community, since its work can impact 
policy making and thus the life of millions. Modellers themselves often eschew such responsibility by 
denying their models can provide reliable prediction, rather focusing on providing non committal 
descriptions of trends, scenario outcomes or relations between model conditioning and outputs.  

Accepting the responsibility that a model provides a prediction, in our opinion, imposes a certain discipline 
both in the modelling exercise and in the delivery of the results, since it enforces an avenue for falsification 
and accountability. Both are inevitable steps in a scientific endeavour and too often modellers fall into the 
temptation to circumvent this responsibility.  

7. CONCLUSIONS: AN ALTERNATIVE VIEW OF COMPUTATIONAL MODELS 

The foregoing discussion of the role and purpose of models may not match our intuition according to which 
highly complex processes are extremely difficult to understand. Also, our experience tells us that complex 
dynamics often appears to be controlled by surprises, rather than regularities.  This has led many authors to 
claim that the use of computer modelling to study and predict complex processes is unwarranted. The authors 
themselves are well aware of the limitation of computer modelling in reproducing complex, novel and 
emergent processes (2, 3, 22-24).  

Here we propose a way of reconciling this apparent contradiction. Numerical models can be seen as a formal 
implementation of the very mental models humans routinely use to represent reality. Seen in this perspective, 
a computational model is not an attempt to reproduce the dynamics of a physical, ecological or human system 
within a computer.  Instead, it is a way to evaluate the consequences of our mental representations of such 
dynamics. Rather than highlighting the inadequacy of a numerical model in simulating reality, this view 
highlights the benefits inherent in carrying out such simulation in a computer rather than in our head: fast 
computation, check for consistency, circumventing of known human fallacies, explicit formalization of 
assumptions and unbiased presentation of results. This idea has been discussed within the application to 
climate change modeling in (25) and will be further developed in future work.  In philosophy of science, this 
view has been defended by Paul Humphreys (26) and others.  Humphreys argued that computational models 
are best understood as extensions of our native cognitive capacities.  We are in broad agreement with this 
view and will develop the details further in future work.  
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