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Abstract: A number of groundwater hydrograph time series models have been proposed over recent years 
but, to our knowledge, there has been no systematic review of their performance and thus no means of 
selecting a model to suit the prevailing conditions. This paper presents an evaluation of the new groundwater 
hydrograph time series models presented in Peterson and Western (2011) against existing models on 620 
bore hydrographs distributed throughout Victoria. Bores that monitor water level under natural conditions 
and having at least 20 years of data were used. The aim of this study is to rigorously demonstrate the strength 
of the  Peterson and Western (2011) models (hence referred to as soil moisture store – transfer function noise 
model, or SMS-TFN) and ascertain which forms of the various soil moisture components within the model 
perform best and under what conditions. To assess the relative performance, the widely used HARTT model 
(Ferdowsian et al. 2001, Ferdowsian et al. 2002) and the standard transfer function noise model (von Asmuth 
et al., 2002) were also investigated.  

This investigation into the groundwater head time series modelling was assessed by evaluating the 
performance of eleven model variants of three classes of models (SMS-TFN, TFN, HARTT) using the 
Coefficient of Efficiency (CoE) and the Akaike Information Criterion (AIC) as the performance measures for 
the calibration and evaluation periods. The results showed that the SMS-TFN model (Peterson and Western, 
2011), significantly improves the predictive model performance compared to the performance of the 
traditional TFN model. The SMS-TFN model with ground water recharge as the forcing component shows 
better model calibration and predictive performances than models with infiltration as the forcing component. 
These model variants produced the best median calibration period CoE of 0.655 (where 1.0 is a perfect fit) 
and the best evaluation period unbiased CoE of 0.270 (see Figure 1). 

The predictive performance of the HARTT model was shown to be highly variable and inconsistent across 
the bore hydrographs tested. If a sustainable linear time trend exits in the bore hydrograph, the model 
produced good results as indicated by performance measures during both calibration and validation periods. 
However, in the absence of such trends, the model performed poorly. This illustrates the potential risk in 
assuming a non-climatic time trend which may or may not exist in the bore hydrographs. More importantly, 
the SMS-TFN model with ground water recharge as the forcing component was shown to be the most robust 
model which can explain most of the bore hydrographs from climate data alone.  

 

Keywords: Time series modelling, Groundwater hydrograph, Climate forcing, HARTT model  

Figure 1. Box plots of CoE for calibration period and unbiased CoE for evaluation period  
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1. INTRODUCTION 

Groundwater models are valuable tools for the catchment managers to take actions on the management of 
groundwater resources. A good model should be able to capture the essence of the catchment dynamics and 
the interaction of climatic processes on the groundwater behaviour and should be good in the predictive 
capability. Testing and improvements to existing groundwater hydrograph models and development of new 
models are of vital importance. The HARTT model (Ferdowsian et al. 2001, Ferdowsian et al. 2002) has 
been widely used in Australia for groundwater time-series modelling (CSIRO 2009, Sinclair Knight Merz 
2005,Sinclair Knight Merz 2006). The model assumes an underline linear time trend in groundwater level 
over time and the effect of rainfall fluctuations is added to it. Rainfall is represented as an accumulation of 
deviations from the average rainfall. The original model has been subsequently improved to include the effect 
of evaporation (Sinclair Knight Merz 2006) and to model non-linear time trends in groundwater (Ferdowsian 
and Pannell 2009). Limitations of this model in groundwater hydrograph modelling are highlighted in 
Peterson and Western (2011). A more robust model, the transfer function noise (TFN) model (von Asmuth et 
al. 2002, von Asmuth and Bierkens 2005, von Asmuth et al. 2008) is an auto-regressive moving average 
externally forced time series model. The model can handle multiple stresses by assigning a separate transfer 
function to each and summing the effects of all stresses. It requires no assumption of first or second order 
climate stationarity, does not require uniformly spaced observations and explains the observed hydrograph 
without adoption of an arbitrary non-climatic temporal trend (as adopted by the HARTT model). 
Applications of this model to Victorian bore data are found in Yihdego and Webb ( 2011).  
 
Peterson and Western (2011) presented a new, and statistically robust, hydrograph analysis method as an 
extension of the standard TFN model. In this method, parsimonious vertically lumped soil moisture model is 
added and a soil moisture state such as infiltration or groundwater recharge is convoluted through transfer 
functions instead of using climate variables directly. In addition, PET term of the TFN model was replaced 
by a soil moisture deficit and this was found to be required to capture long term declines. Their investigation 
into groundwater head time series modelling, using 12 observation bores in upper catchment in Wimmera 
River, identified that the inclusion of a parsimonious soil moisture store to the standard TFN model 
significantly increased the model predictive performance. Furthermore, Peterson and Western (2011) has 
been extended by Shapoori et al. (2011) to incorporate groundwater pumping. It has been tested using 
synthetic ModFlow models and the results are shown to be very encouraging. 
 
This paper presents an evaluation of the new groundwater hydrograph time series models (Peterson and 
Western 2011) against existing models on 620 water table bore hydrographs distributed throughout Victoria. 
The aim of this study is to rigorously demonstrate the strength of the Peterson and Western (2011) models 
(hence referred to as soil moisture store – transfer function noise model, or SMS-TFN) and ascertain which 
forms of the various soil moisture components within the model perform best. To assess the relative 
performance, the widely used HARTT model and the standard TFN model (von Asmuth et al., 2002) were 
also investigated.  

2. METHODS 

2.1. Model description 

Three classes of groundwater time series models with increasing complexities were employed. The salient 
features of the 11 models associated with these three classes are outlined in Table 1. Models m1 to m7 refer 
to SMS-TFN model variants while m8 and m9 refer to TFN and HARTT models respectively. The simplest 
of the models, the HARTT model (Ferdowsian et al., 2001), simulates the groundwater head as a linear 
combination of the cumulative monthly rainfall residual (CRR) and a time trend. The model used here is an 
improvement of the original model in which a monthly areal potential evapotranspiration term, scaled by the 
sum of two linear sigmodial terms, is added (Sinclair Knight Merz, 2006).  The five parameters of the model 
are determined by multiple linear regression.      

In transfer function noise models (TFN), the contribution of a climate variable on the groundwater head is 
estimated as the convolution of the historic time series of the variable with the weights from a non-linear 
transfer function (von Asmuth and Bierkens, 2005; von Asmuth et al., 2002; von Asmuth et al., 2008). 
Multiple responsive climate variables and external stresses can be handled by assigning a separate transfer 
function to each variable or scaling a transfer function assigned to one variable for another variable where 
applicable. The time series of groundwater head is then obtained by summing the separate effects of all 
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forcing variables. In model m8a, separate Pearson type III distribution functions (PIII) are applied for daily 
precipitation (Pt) and areal potential evapotranspiration (Et) while in model m8b the same TFN used for 
precipitation is scaled and applied to Et. In model m8c, precipitation is considered solely responsible for the 
groundwater head. The parameters of the models are estimated by minimizing the variance of the 
innovations, not residuals, using a weighted least-squares objective function. An exponential noise model is 
incorporated to simulate the correlation of residuals from which the innovations are calculated. 

Table 1. Salient features of groundwater time series models used in the study  

Model Class 
Model  

ID 
Sat 

excess 
Infilt 
exces

ET  
scaling 

+ 
forcing 

- 
forcing 

Number of Parameters 
Soil TFN Noise Reg 

Soil moisture 
component + 
non-linear 
TFN 
(SMS-TFN) 

m1    Infilt deficit 1 6 1 - 
m2    Infilt deficit 2 6 1 - 
m3    Infilt deficit 2 6 1 - 
m4    Infilt deficit 3 6 1 - 
m5    Rechar deficit 3 6 1 - 
m6    Rechar deficit 2 6 1 - 
m7    Rechar deficit 3 6 1 - 

Non-linear 
TFN  

m8a - - - Precip Et - 6 1 - 
m8b - - - Precip Et* - 4 1 - 
m8c - - - Precip Et - 3 1 - 

HARTT  m9 Multiple linear regression (Pt, Et, and trend) - - - 5 
* scaled by precip transfer function; all other forcing using independent TFNs 

Peterson and Western (2011) improved the traditional transfer function noise model by inclusion of a derived 
soil moisture state variable (SMS-TFN model) as a surrogate for direct climate forcing. They considered that 
the groundwater head response to precipitation is dependent upon the variables such as runoff, interception, 
unsaturated vertical conductivity and soil moisture. A parsimonious vertically lumped soil moisture model 
was added to estimate the soil moisture state variables. The SMS-TFN model variants listed in Table 1 can be 
divided into two broader categories. In models m1 to m4, the precipitation in the traditional TFN model is 
replaced by an infiltration rate while in models m5 to m7 it is replaced by a free-drainage recharge estimate. 
The evaporation from the soil layer is modelled as Et times the fraction of soil moisture. There are subtle 
differences in the soil moisture models used across different variants. In models m3, m4 and m5 precipitation 
is filtered by a maximum infiltration rate parameter as such the model mimics both infiltration excess and 
saturation excess and this infiltration parameter is absent in other models. In models m2, m4 and m7 an 
additional parameter is included to scale the evaporation from the soil layer. The model is incorporated with 
smoothing functions to constrain operators within upper and lower bounds without response surface 
discontinuities as a requirement for the calibration of the model using a gradient based solver. All model 
variants employ separate transfer functions of Pearson Type III for two forcing components. Factors that 
contribute to increase the water head are termed as positive forcing and vice versa for negative forcing (Table 
1). An important adoption is the scaling of Et by the soil moisture deficit for the Et forcing contribution. This 
was conceptualized as the uptake of groundwater by vegetation during low soil moisture periods and was 
found to be essential for simulating long term groundwater level declines (Peterson and Western, 2011).  

2.2. Groundwater Data 

A comprehensive Victorian groundwater database 
has been established for this study comprising 
groundwater databases maintained by Victorian 
Department of Sustainability and Environment 
(DSE), Department of Primary Industries (DPI) 
and NSW Department of Water and Energy 
(DWE). The database contains 343,153 bores and 
10.7 million observations. For evaluation of the 
groundwater hydrograph time series models 920 
bore records distributed throughout Victoria were 
selected from this database. The selected bores are 
of three types: bores within sedimentary deposits 
that are monitoring the water table; bores 
monitoring confined aquifers; and shallow bores 
within bedrock. This paper is limited to the 
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evaluation of 620 bore records that measure water table. Figure 2 shows the distribution of selected bores. 

The extraction of suitable bore records from this database was subject to pre-processing of data to remove 
water level observations likely to be erroneous. Water level observations with any quality codes and all 
multiple observations for a single day were initially removed. The data records were then filtered to be 
approximately free of outliers using an automated procedure. The moving average was calculated using a two 
tailed exponential weighting with a window size of 365 days. The residuals were then derived (i.e. the 
difference between the moving average and the observations) and the standard deviation was calculated. If an 
observation's residual was further than three standard deviations from the mean it was removed. The moving 
average process was repeated three times per time series. 

The modelling aims to investigate ground water level changes over time under natural conditions influenced 
only by climate and underlined geological conditions. The bores considered in this paper are representative of 
bores that monitor water level under natural conditions over long periods and having a good spatial coverage. 
The identification of bores that monitor the water table, and not the deeper aquifer layers, was based on the 
comparison of bore depth against the Victorian aquifer stratiography elevations (SKM and GHD 2009, 
Spatial Vision 2009) using an automated algorithm. The bores used for irrigated agriculture and for other 
intensive uses were not considered. Observation records were guaranteed for a minimum period of 20 years 
after excluding suspect observations. The data records were also checked for adequate continuity by applying 
an additional constraint in which at least for 15 years of the record should have a minimum of 6 data 
observations for each year. Nested bores within close proximity were also excluded if the bore depths are 
very similar. Bore depth of the 620 bores, which measure the water table, considered in this paper ranged 
from 1.5 to 100m with a median depth of 14.1m. The record length ranged from 20.0 to 58.2 years with a 
median record of 28.8 years while number of water level observation for each bore ranged from 149 to 1088 
with a median of 284 observations.    

2.3. Climate Data 

Daily precipitation and potential evapotranspiration (PET) data were used as the input to the soil moisture 
model of the SMS-TFN model and as the climate forcing contribution through appropriate transfer response 
functions for other models. Precipitation and other meteorological data required to estimate PET were 
compiled from the Australian Water Availability Project (AWAP) database in which data for each climate 
element are provided at 0.05 degree resolution for entire Australia (Raupach et al. 2009). PET was estimated 
from the Morton’s (1983) complementary relationship areal model using daily values of maximum and 
minimum temperature, vapour pressure and net solar radiation. As the daily net solar radiation was available 
from 1990 onwards the computation of PET values prior to 1990 was based on the mean monthly average net 
radiation values from 1960 to 1990. Precipitation and PET daily time series over the period 1950-2010 at 
each bore location was based on the computed values at the nearest grid cell to the bore location. 

2.4. Model Implementation 

Each of the eleven models was calibrated using all observation data minus the data in the last 10 years 
irrespective of the length of the bore record. The calibrated models were then evaluated for predictive model 
performance on the last ten years data. The calibration was undertaken using a multi-start Levenberg-
Marquardt Newtonian solver (Hill & Tiedeman, 2007; Levenberg, 1944; Marquardt, 1963). Numerous 
extensions were implemented to aid efficient computation, most notably the Broyden updating of Jacobian 
matrix (Broyden, 1965; Davidon, 1991) and parallel computation of multiple starts. Each was run with 8 
initial starts, with each start having a maximum of 1500 iterations and the function and parameter 
convergence criteria set to 1E-8. The models were run on the University of Melbourne Alfred Linux cluster 
using its 40 64bit Opteron nodes(www.hpc.unimelb.edu.au/alfred).  

2.5. Model assessment  

The performance of the models was assessed by the Coefficient of Efficiency, CoE (Nash and Sutcliffe, 
1970) and the Akaike Information Criterion, AIC (Akaike, 1974) for the calibration and evaluation periods. 
For the evaluation period an unbiased COE was used in which the bias corrected residuals were used in the 
computation. It masks the effect of model bias on the CoE measure and allows a more effective comparison 
of model performance. The bias defined as the mean of the residuals, i.e. the observed minus the modelled 
head, was assessed independently. The AIC is a measure of the relative goodness of fit of a model with an 
increasing penalty on the number of parameters in the model, which facilitates a comparison of performance 
of models of differing number of parameters. A lower value indicates a parsimonious model with a good fit. 
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3. RESULTS 

Figure 3 shows box plots of CoE between observed and estimated water head for the calibration period and 
unbiased CoE for the evaluation period for all 11 models tested. Similarly, Figure 4 shows box plots of AIC 
for the calibration and evaluation periods. Figure 5 shows box plots of bias in the estimated groundwater 
head. Table 2 presents the median values of each performance measure shown in figures 3 to 5.  

Figure 3 shows that all variants of the SMS-TFN perform considerably better than the TFN model variants 
and the HARTT model with respect to the CoE measure over the calibration period. It is also evident that the 
performance of the recharge forced SMS-TFN model variants (m5, m6, m7) is better than that of the 
infiltration forced SMS-TFN model variants. The models m5 and m7 have the highest calibration CoE with 
median values of 0.655 and 0.654 respectively. These two variants have one additional soil layer parameter 
than in m6. In addition to soil moisture capacity and recession parameters, m5 has an infiltration parameter 
and m7 has a scaled ET parameter. The performance of the standard TFN model with both precipitation and 
evapotranspiration forcing components included is much greater than the model with only the precipitation 
term. The performance of the TFN models with the evapotranspiration term (m8a and m8b) is generally 
comparable with the performance of the HARTT model. The calibration AIC measure (Figure 3) also shows 
very similar performance across all the models tested. The models m5 and m7 have again shown the best 
performance with the lowest AIC values although the distinction among the models is not high as with the 
CoE values. It should be noted that these models performed well regardless of the penalty of the AIC 
criterion for having more parameters in the model.  

 

For the evaluation period, the performance measures are comparatively less distinctive across the models and 
significantly lower compared to the calibration period performance. The model m6 produced the highest 
median unbiased CoE (0.270) but the performance is only marginally better than that of other SMS-TFN 
models. With regard to the HARTT model, it produced a comparable median unbiased CoE (0.227) but it’s 
inter quartile range was very large. This shows that the HARTT model lacks the ability to produce consistent 

Figure 3. Box plots of CoE for calibration 
period and unbiased CoE for evaluation period

Figure 4. Box plots of AIC for calibration and 
evaluation periods 
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results across the whole range of bore records. All the 
models show some bias in the modelled groundwater 
head (Figure 5), i.e. the modelled head tends to be 
higher than the observed head. The least median biases 
shown in the recharge forced SMS-TFN models and 
the HARTT model are in the range of 0.4m. The AIC 
measure over the evaluation period (Figure 4) shows 
somewhat better performance from models m5, m6, m7 
and m9.  

The HARTT model has shown good results when the 
observed data generally supports a linear time trend but 
performs poorly when the data do not exhibit such 
trends. On the other hand, the recharge based SMS-
TFN model variants have shown to be the most robust 
models which can be applied over a wider range of 
bores in different climatic and geographical regions. 

The bore hydrographs from these models could be explained from climate data alone without any time trend 
assumptions. 

Table 2. Median values of performance measures  

Statistic 
SMS-TFN (Infiltration) SMS-TFN(Recharge) TFN HARTT 

m1 m2 m3 m4 m5 m6 m7 m8a m8b m8c m9 

CoE (cal) 0.535 0.554 0.537 0.607 0.655 0.632 0.654 0.476 0.427 0.140 0.453 

CoEU (val) 0.217 0.239 0.248 0.214 0.233 0.270 0.254 0.231 0.212 0.033 0.227 

Bias (m) -0.56 -0.62 -0.59 -0.57 -0.43 -0.44 -0.43 -0.62 -0.65 -0.85 -0.42 

AIC (cal) -2.28 -2.34 -2.28 -2.50 -2.60 -2.51 -2.59 -2.19 -2.12 -1.75 -2.19 

AIC (val) -0.01 0.10 0.09 0.07 -0.09 -0.12 -0.06 0.08 0.04 0.33 -0.17 

4. DISCUSSION AND CONCLUSIONS 

This investigation into the groundwater head time series modelling showed that the SMS-TFN model 
(Peterson and Western, 2011), with an added parsimonious soil moisture model to the TFN model, 
significantly improves the predictive model performance compared to the performance of the traditional TFN 
model. The SMS-TFN model with ground water recharge as the forcing component shows better model 
calibration and predictive performances than models with infiltration as the forcing component. 
Conceptually, recharge is the direct link to the groundwater storage and use of this soil moisture state as the 
forcing component has more relevance and yielded better results. The models m5 and m7 produced the 
highest median calibration CoE while the model m6 resulted in the highest unbiased CoE for the evaluation 
period. The model m7 yielded compromised performance statistics for both calibration and validation 
periods.    

For calibration, the HARTT model performed significantly worse than all SMS-TFN model variants and the 
P and Et forced TFN model (m8a). Furthermore, the predictive performance of the HARTT model was 
shown to be highly variable and inconsistent across the bore hydrographs tested. If a sustained linear time 
trend exits in the bore hydrograph, the model produced good results as indicated by performance measures 
during both calibration and validation periods. However, in the absence or change in such a trend, the model 
performed poorly. These results illustrate the considerable risk in adopting the non-climatic time trend of 
HARTT. More importantly, the SMS-TFN model with an appropriate soil moisture state as the forcing 
component was shown to produce a robust model that can explain most of the bore hydrographs from climate 
data alone, thus making the HARTT non-climatic time trend redundant.  

Future research will evaluate the performance of various models on bore records from confined and bedrock 
bores. Future research will also assess under what conditions each model is likely to perform best.. The 
results presented here are based on the predictive performance of the models evaluated using a validation 
period of the last 10 years of each record and the predictive performance of various models over shorter 
periods is under investigation. The results will be published in a future paper. 

Figure 5. Box plots of the evaluation period 
bias of the estimated head 

-3

-2

-1

0

1

2

m1 m2 m3 m4 m5 m6 m7 8a 8b 8c m9

B
ia

s 
of

 e
st

im
at

ed
 h

ea
d 

(m
)

2126



Siriwardena et al., A state-wide assessment of optimal groundwater hydrograph time series models  

ACKNOWLEDGMENTS 

The Authors are very grateful to the Australian Research Council (LP0991281) for contributing to the 
funding of this research. The authors are also very grateful to the following research partners for their 
funding and generous and encouraged support: Dr. Andrew Frost, Mr. Derek Bacon and Dr. Carl Daamen of 
the Bureau of Meteorology, Mr. Xiang Cheng of the Department of Primary Industries, Victoria and Mr. 
Chris McAuley of the Department of Sustainability, Victoria.  

REFERENCES 

Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic 
Control, 19(6), 716:723. 

Broyden, C.G. (1965). A class of methods for solving nonlinear simultaneous equations, Mathematics of 
Computation, American Mathematical Society, 19(92): 577-593. 

CSIRO (2009). Groundwater yields in south-west Western Australia: a report to the Australian Government 
from the CSIRO south-west Western Australia sustainable yields project, Technical report, Australia. 

Davidon, W. C. (1991). Variable metric method for minimization, SIAM Journal on Optimization,1(1), 1–17. 
Ferdowsian, R., Pannell, D. J., McCarron, C., Ryder, A. and Crossing, L. (2001). Explaining groundwater 

hydrographs: Separating atypical rainfall events from time trends, Australian Journal of Soil Research, 
39(4), 861–875. 

Ferdowsian, R. and Pannell, D. (2009). Explaining long-term trends in groundwater hydrographs, 18th World 
IMACS / MODSIM Congress, Cairns, Australia, pp. 3109–3115. 

Ferdowsian, R., Ryder, A., George, R., Bee, G. and Smart, R. (2002). Groundwater level reductions under 
lucerne depend on the landform and groundwater flow systems (local or intermediate), Australian Journal 
of Soil Research 40(3), 381–396. 

Hill, M. C. and Tiedeman, C. R. (2007). Effective groundwater model calibration: with analysis of data 
sensitivities, predictions, and uncertainty, John Wiley & Sons, New Jersey, USA. 

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares, The 
Quarterly of Applied Mathematics, 2, 164–168. 

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters, Journal of the 
Society for Industrial and Applied Mathematics, 11(2), 431–441. 

Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science 
and practice of hydrology. Journal of Hydrology, 66, 1-76. 

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part 1 – A discussion 
of principles, Journal of Hydrology, 10(3), 282-290. 

Peterson, T.J. and Western, A.W. (2011). Time-series modelling of groundwater head and its de-composition 
to historic climate periods, 34th IAHR Congress, Brisbane, Australia. 

Raupach, M.R., Briggs, P.R., Haverd, V. King, E.A., Paget, M. and Trudinger, C.M. (2009). Australian 
Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report 
for Phase 3. CAWCR Technical Report No. 013, 67 pp.(http://www.csiro.au/awap) 

Shapoori, V., Peterson. T.J, Costelloe and Western, A.W. (2011). Quantifying the impact of pumping on 
groundwater heads using observation data and advanced time series analysis, MODSIM 2011, Perth, 
Australia (to be presented).  

Sinclair Knight Merz (2005). Five year technical review of the Neuarpur WSPA groundwater management 
plan, Technical Report WC02865, Melbourne, Australia. 

Sinclair Knight Merz (2006). National Action Plan for Salinity and Water - Benchmarking regional water 
table and trends, Technical Report WC02661, Melbourne, Australia. 

SKM and GHD (2009). Hydrogeological mapping of southern Victoria, Sinclair Knight Merz , Armadale, 
Victoria, SKM Project Number VW04237. 

Spatial Vision (2009). Ground water northern model, Spatial Vision, Melbourne, Victoria, Project Number 
SV002946. 

von Asmuth, J. R. and Bierkens, M. F. P. (2005). Modeling irregularly spaced residual series as a continuous 
stochastic process, Water Resources Research, 41(12). 

von Asmuth, J. R., Bierkens, M. F. P. and Maas, K. (2002). Transfer function-noise modeling in continuous 
time using predefined impulse response functions, Water Resources Research, 38(12). 

von Asmuth, J. R., Maas, K., Bakker, M. and Petersen, J. (2008). Modeling time series of ground water head 
fluctuations subjected to multiple stresses, Groundwater, 46(1), 30–40. 

Yihdego, Y. and Webb, J.A. (2011). Modeling of bore hydrographs to determine the impact of climate and 
land-use change in a temperate subhumid region of southeastern Australia, Hydrogeology Journal, 
Hannover, 19(4), 877-887. 

2127




