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Abstract: Designing an efficient large-area survey is a challenge, especially in environmental science when 
many populations are rare and clustered. Adaptive and unequal probability sampling designs are appealing 
when populations are rare and clustered because survey effort can be targeted to subareas of high interest. For 
example, higher density subareas are usually of more interest than lower density areas. Adaptive and unequal 
probability sampling offer flexibility for designing a long term survey because they can accommodate 
changes in survey objectives, changes in underlying environmental habitat, and changes in species-habitat 
models. 
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1. INTRODUCTION 

The need for information for successful environmental management has led to an interest in developing new 
designs for statistical surveys.  Environmental managers require information for monitoring current status 
and long term trends in environmental quality, and for assessing the impacts of changes in management 
practice.  Examples include monitoring of protected areas such as national parks (Fancy et al. 2009), 
monitoring for biodiversity (Nielson et al. 2009), and designs to detect contamination (Olsen et al. 2009). 
 

Some of the principle features of survey designs that provide good support for environmental management 
are designs that are robust for large areas, flexible and adaptable for heterogeneity, and responsive to change. 
Surveys must be capable of providing summary information on species occurrence, abundance, and structure 
collected from large areas of land or water.  Large area surveys require a degree of spatial spread, or 
distribution of sample sites over the landscape, and this spread must be achieved in a statistical valid way to 
allow estimation of the population parameters of interest (Lister et al. 2009). Environmental systems are 
complex with a high degree of spatial and temporal heterogeneity in the underlying ecosystems. Surveys 
need to be flexible and adaptable to ensure they provide targeted information from such complex systems. 
Another important feature of environmental surveys is that because information needs and priorities change, 
surveys must be capable of responding to shifts in survey objectives.   
 

Adaptive and unequal probability survey designs offer many attractive features for environmental surveys.  
Adaptive and unequal probability surveys can be designed for surveys of large areas providing the desired 
spatial spread and flexibility for responding to heterogeneity and changing priorities, while maintaining the 
key elements of probability-based statistical surveys.  Adaptive sampling refers to sampling designs where 
the protocol for data-collection changes, evolves or adapts during the course of the survey.  Unequal 
probability sampling is where the sample units (e.g., sample sites) have different probabilities of appearing in 
the sample (Thompson and Seber 1996). 
 

There are many examples of adaptive sampling in environmental science and here we review some of them, 
with particular reference to populations that are rare and clustered.  A text on adaptive sampling was 
published in 1996 by Thompson and Seber, which presents much of the theoretical background and 
development of estimators. The emphasis is on rare and clustered populations is simply because these are 
often the most challenging to survey and are also very common in environmental science (McDonald, 2004)  

2. ADAPTIVE CLUSTER SAMPLING 

Adaptive cluster sampling was introduced by Thompson (1990) and it was developed for sampling rare and 
clustered population. The design typically starts with a random sample, although it can also be applied to 
systematic sampling (Thompson 1991a; Acharya et al. 2000), stratified sampling (Thompson 1991b; Brown 
1999) and two-stage sampling (Salehi and Seber 1997). 
 
Prior to sampling, a threshold value is chosen, C, and if any of the units in the initial sample meet or exceed 
this threshold, yi ≥ C, then neighboring units are sampled. If any of these neighboring units meet this 
condition, their neighboring units are selected and so on. As sampling continues for any cluster that is 
detected in the initial sample, the shape and size of the cluster can be described.   
 
The final sample is the collection of clusters that were detected in the initial sample, including any of the 
sample units that were in the initial sample but below the threshold.  Survey effort is targeted to searching in 
the neighborhood of the location of where any plant (or animal) that is found in the initial sample. This 
feature of the design is very appealing. The design uses the intuitive behavior of a field biologist that once a 
rare plant is found they want to search in the immediate neighborhood, and puts this behavior in the 
framework of (unequal) probability sampling.   
 
Horvitz–Thompson estimators are used for the population parameters in adaptive cluster sampling 
(Thompson and Seber 1996). Two terms need to be defined to help understand the terminology to distinguish 
“networks” and “clusters”. A network is the collection of units around the unit in the initial sample that 
triggered neighborhood searching.  All these units will have met the condition.   
 
Neighborhood searching is an adaptive process, and for neighborhood searching to stop, units must have 
been measured and their value found to be below the threshold. These units are called “edge units”. Together, 
networks and edge units make up a cluster.  Any unit in the initial sample that does not meet the condition is 
considered a network of size one.   
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In the example in figure 1 of blue-winged teal (Smith et al. 1995) an initial sample of 10 quadrants is taken 
(left side of figure).  The survey was designed with the threshold condition, yi ≥ 1 and the definition of the 
neighborhood as the four surrounding quadrants.  Only one quadrant in the initial sample triggered adaptive 
selection of the surrounding quadrants.  

The final sample size is 16 (right side of figure), 
but in total, many more than 16 units had to be 
visited: the four neighboring units are always 
visited or checked if ducks are present, but only 
those in the initial sample or in a network are used 
in calculating the sample estimators. These other 
units are the edge units, and are visited and 
checked so that the “edge” of the networks can be 
defined.  With a simple condition like yi ≥ 1, these 
units only needed to be checked to see if ducks are 
present or absent.  However, when the condition is 
that the sample unit has a value that is larger than a 
count then the unit would need to be enumerated 
to check if the condition were met.  
 
Software packages can be used to assist with these 
calculations, e.g. SAMPLE at 
 http://www.lsc.usgs.gov/aeb/davids/acs/ 
(Morrison et al 2008). 
 

Figure 1 Adaptive cluster sampling of blue-winged teal. 
 
The efficiency of adaptive cluster sampling depends firstly on how clustered the population is and, secondly, 
on the survey design.  As a general principle, the more clustered the population is, the more efficient adaptive 
cluster sampling is compared with simple random sampling.  The design choices in adaptive cluster sampling 
are the sample unit size and shape, the size of the initial sample, the criteria for adaptive selection, and the 
neighborhood definition (e.g. the surrounding 2, 4 or 8 neighboring units). There is considerable literature on 
how to design an efficient survey and much of this is reviewed in Smith et al. (2004), and Turk and 
Borkowski (2005).  A general principle is that efficient designs will be where the final sample size is not 
excessively larger than the initial sample size, and which has small networks.  This can be achieved by using 
large criteria for adapting and small neighborhood definitions (Brown 2003). 
 
An issue often raised with adaptive cluster sampling is that the size of the final sample is not known prior to 
sampling and this can make planning the field work difficult. Restricting the final sample size by a stopping 
rule has been discussed by Brown and Manly (1998), Salehi and Seber (2002), and Lo et al. (1997). Another 
approach is an inverse sampling design, where surveying stops once a set number of nonzero units have been 
selected (Christman and Lan 2001; Seber and Salehi 2004). 
 
Adaptive cluster sampling has been used in a range of environmental situations.  Some recent examples are 
the use of adaptive cluster sampling for surveys of plants (Philippi 2005), waterfowl (Smith et al. 1995), 
seaweed (Goldberg et al. 2006), shellfish (Smith et al. 2003), marsupials (Smith et al. 2004), forests (Talvitie 
et al. 2006; Magnussen et al. 2005), herpetofauna (Noon et al. 2006), larval sea lampreys (Sullivan et al. 
2008), sediment load in rivers (Arabkhedri 2010), in hydroacoustic surveys (Conners and Schwager 2002) 
and fish eggs (Smith et al. 2004; Lo et al. 1997). 

3. STRATIFIED AND TWO-STAGE SAMPLING 

Adaptive sampling can also be used with conventional stratified and two-stage sampling.  Two-stage 
sampling and stratified sampling are related in that in both designs the study area is sectioned into strata or 
primary units.  In stratified sampling all strata are selected while in two-stage sampling a selection of primary 
units is chosen.  Sampling (in the second phase) is done by taking a sample of secondary units from the 
chosen primary units, noting that in stratified sampling all primary units are chosen.  
 
Both stratified and two-stage sampling can be very useful for sampling rare and clustered populations in the 
same way that adaptive cluster sampling is.  Even if the location and size of the species-clusters are not 
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known, as long as their location can be approximated by some auxiliary information and species-cluster size 
can be approximated by existing biological knowledge, survey effort can be targeted.  One useful measure for 
approximating species-cluster location is a habitat suitability score estimated from environmental resource 
selection functions (Boyce et al. 2002) or from habitat modeling. This suitability score can be used to 
delineate primary units with differing levels of propensity for species occupancy. Survey effort can then be 
allocated among primary units targeting effort to the primary units or strata that are thought to be most likely 
to contain the clusters of interest.  Even in situations where habitat maps and habitat prediction models for 
species distribution have some uncertainty, sectioning the study area into strata and primary units should be 
based on the idea of minimizing the within-primary unit or the within-stratum variance so that the units 
within the primary units are as similar as possible.   

3.1 Two-phase stratified sampling 

One of the early adaptive stratified designs was proposed by Francis (1984). In the two-phase stratified 
design the survey area is sectioned into strata and initial survey effort allocated based on the best available 
information using the standard approach of putting more effort in the more variable strata.  After this initial 
phase of sampling, the preliminary information can be used to improve the estimate of the strata variability, 
and the remaining survey effort can be allocated to the strata that will be most effective in reducing the 
overall sample variance. 
 
Using the first phase sample results to estimate within-stratum variance, the remaining sample units are 
added one by one to an individual stratum. At each step of this sequential allocation of sample units, the 
stratum that is allocated the unit is chosen on the basis of where the greatest reduction in variance will be.  
For some populations, rather than using within stratum variance of the criteria for adaptive allocation, the 
square of the stratum mean is preferred (Francis 1984). The final estimates are based on the pooled 
information from the first and second phases.  This does result in a small bias, and bootstrapping has been 
proposed for bias correction and variance estimation (Manly 2004).  
 
This adaptive allocation in the second phase is done to adjust or to make up for any shortcomings in the 
initial allocation of effort.  As information is gained during the course of the survey, the design for data-
collection evolves and adapts. 
 
A similar scheme was proposed by Jolly and Hampton (1990). The design has been extended to surveying 
multiple populations (Manly et al. 2002). Smith and Lundy (2006) used a modified design to conduct a 
stratified sample of sea scallops.  Based on the within-stratum mean from the first phase, a fixed amount of 
effort was allocated to each stratum where the mean was above a threshold value.  They used the Rao–
Blackwell method (Thompson and Seber 1996) to derive an unbiased estimate for the population.  

3.2 Adaptive two-stage sequential sampling  

Another example of adaptive allocation with two-stage sampling is adaptive two-stage sequential sampling 
(Brown et al. 2008). An initial sample is taken from selected primary units.  Then, in the second phase, 
additional units are allocated to the primary units proportional to the number of observed units in that 
primary unit that exceed a threshold value gi·λ, where gi is the number of sampled units in the ith primary unit 
that exceed the threshold value and λ is a multiplier.   

3.3 Complete allocation stratified sampling 

Another example of adaptive sampling applied to conventional stratified or two-stage sampling is a complete 
allocation stratified design (Salehi and Brown 2010).  This is a simplified design for adaptive stratified 
sampling. If any unit in a stratum has a value that exceeds a threshold, the stratum is completely surveyed. It 
is simplified in two ways: the rule to decide on whether a stratum is to be allocated additional survey effort 
does not require the first-phase survey in the stratum to be completed. Secondly, the instruction to the field 
crew on how much additional effort is required is simply to survey the entire stratum. 
 
The complete allocation stratified design merges the best features of some of the previous adaptive designs. 
In adaptive cluster sampling, the appeal is that it allows the field biologist to target survey effort to 
neighborhoods where individuals from a rare species were observed in the initial (first-phase) sample. This 
adaptive searching of the neighborhood in adaptive cluster sampling is similar to conducting a complete 
search in the vicinity of the found individual. In complete allocation, once an individual is observed, the 
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neighborhood is completely searched. The difference is that in adaptive cluster sampling, the neighborhood is 
not defined prior to sampling and, for some populations, can be excessively large (Brown 2003). In complete 
stratified allocation, the searched neighborhood is defined and restrained by the stratum boundary. 
 

 
In the example in figure 2 of Castle Hill 
buttercups (Brown 2010) the study site 
was divided into 12 strata. In the first 
phase, a simple random sample of size 3 
was taken from each of the stratum. 
Three strata had first-phase samples 
containing buttercups.  In the second 
phase, these three strata were surveyed 
completely.  The total final sample size is 
therefore (3 x 25) + 9 x 3) = 102.  
 
In the simulation study of Salehi and 
Brown (2010) gains in efficiency over 
non-adaptive stratified sampling were for 
some designs, very large.  
 
 
 
 

Figure 2 Complete allocation stratified sampling of buttercups 

4. DISCUSSION 

Adaptive and unequal probability sampling designs offer a wide range of flexible and useful survey 
techniques. These designs are especially useful for environmental sampling and for surveys of rare and 
clustered populations because they allow survey effort to be targeted to where any plant or animal of interest 
has been found.  Changes to survey objectives can be readily accommodated by altering primary unit, or 
strata, boundaries, shifting first-phase allocation to effort among primary units, and changing the threshold 
condition used for second-phase adaptive allocation.  Similarly, as the underlying environmental habitat 
changes, or as habitat models improve, the sample design can be modified.  The flexibility in adaptive and 
unequal probability sampling is that population estimates derived from surveys where design features have 
changed (e.g., relative survey effort allocation and threshold condition) are still comparable. In long term 
environmental monitoring these two features of design flexibility and estimates that are comparable among-
years are important considerations. 
 
Adaptive and unequal probability sampling can be applied to any sampling situation. We have discussed 
adaptive selection as a complement to simple random sampling, two-stage and stratified sampling.  We use 
the terminology suggested by Salehi and Brown (2010) with the use of the terms “adaptive searching” and 
“adaptive allocation” to distinguish two categories. Adaptive searching refers to designs such as adaptive 
cluster sampling where the neighborhood is searched.  In contrast, in adaptive allocation, extra effort is 
initiated once a collection of units are sampled (e.g. the stratum or the primary unit). The distinction between 
the two classes is based on where and when the decision to allocate extra effort can be made: immediately 
after an individual sample unit is measured or once a collection of units has been completely sampled. 
 
In adaptive cluster sampling, extra effort is allocated for adaptive searching in the neighborhood of units in 
the initial sample that met the threshold condition.  With stratified or two-stage designs such as two-phase 
stratified sampling (Francis 1984), adaptive two-stage sequential sampling (Brown et al 2008) and complete 
allocation stratified sampling (Salehi and Brown 2010), adaptive allocation of additional effort is triggered on 
the basis of a measure of the whole stratum (or primary unit).   
 
All the designs discussed are remarkably efficient, giving estimates of populations that have lower variance 
than the conventional design without the adaptive selection.  However, as with conventional sampling, the 
survey must be carefully designed to achieve these efficiencies. Design features include choice of the size 
and number of stratum, allocation of effort to the first phase (i.e. the initial sample before the additional effort 
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is allocated) relative to second-phase effort, the threshold used to trigger adaptive allocation, and, for 
adaptive cluster sampling, the neighborhood definition.   
 
It is important to ensure adequate effort is available for the adaptive allocation that occurs in the second 
phase of sampling if large gains in efficiency are to be realized.  For the same amount of effort, Brown et al. 
(2008) recommend putting less effort into the initial sample of the selected primary sample units to ensure 
more effort is available for the sequential allocation of additional units, compared with the reverse.  Another 
recommendation is that the threshold value that is used to “trigger” adaptive allocation of additional units 
should be relatively high. These recommendations are consistent with what is recommended for adaptive 
cluster sampling (Brown 2003, Smith et al. 2004). 
 
For adaptive stratified and two-stage designs sample efficiency improved when the primary units created 
boundaries that encompassed aggregates or clusters. This is because the adaptive allocation of effort to 
primary units is a very effective way of targeting effort to where the species of interest is located. Similarly 
when stratification intensity increases with more, and smaller, primary units or strata, the survey efficiency 
improves as the primary units become closer to matching the size of the aggregates in the underlying 
population.  
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