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Abstract: The potential to delineate the location along a slope at which channels initiate is important for 
understanding hydrologic and geomorphic processes governing headwater streams. Most work assumes a 
uniform input of precipitation across the catchment, and every cell would receive the same volume of water. 
In reality, sites at higher elevations receive more rainfall, and tend to have smaller contributing area and 
stream length. In this paper, a channel initiation point (CIP) model is developed. The CIP model estimates 
channel initialisation based on a logistic regression (LR) technique. An LR relationship is applied because of 
its flexibility in assumptions where a discrete variable can be considered. By incorporating the accumulated 
rainfall surface into the LR, resulting drainage areas reflect hydrologic and geomorphic influences on channel 
initiation. The study area is part of the Lower Cotter experimental catchment, a headwater alpine catchment 
located in the Brindabella region in south-eastern Australia. The aim is to test the capability of the CIP model 
in estimating the channel network, capturing channel heads and disconnected channels. The estimated 
channel network is compared to that obtained using a classical method on the basis of a constant area 
threshold. The CIP model performs well in identifying channel and non-channel cells while improving 
channel head localisation and extraction of channel continuity. Overall, the CIP model can be considered as a 
valid alternative to commonly-applied traditional methods for channel network extraction from Digital 
Elevation Models (DEMs), in addition to considering hydrologic impacts on channel initiation. 

Keywords: Disconnected channel, channel initiation, accumulated rainfall, logistic regression, digital 
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1. INTRODUCTION 

Accurate identification and mapping of headwater streams is essential for physically-based characterisation 
of hydrologic processes in small catchments (Melville and Martz, 2004). Channel network morphology 
consists of two principal components: a) the channel head or channel initiation point (CIP) and b) the 
continuous incised channel (Hooke, 2003). Identification of the degree of channel connectivity is important 
for understanding the linkages between river reaches, the influence of sediment sources on channel 
morphology and hydrologic mechanisms (Hooke, 2003). Small errors in interpreting channel continuity 
would have a significant impact on the channel length, stream order, and drainage density (Garbrecht and 
Martz, 2000). The drainage density is indicative of the texture of the area, providing a useful numerical 
measure of subcatchment dissection and runoff potential (Horton, 1945).  

The modeled channel extents vary according to the accumulation threshold values defined for channel 
initiation. The traditional approach for channel delineation is to apply a topographic threshold from Digital 
Elevation Models (DEMs) to define the initiation point beyond which the channel network is chosen 
(Dietrich et al., 1993; Tarboton, 1997). These approaches assume that the flow direction is only dependent on 
topographic features. In most situations, the physical location of channel heads is related to other factors such 
as soil properties, climatic environment and land use (Montgomery and Dietrich, 1989; Prosser and 
Abernethy, 1996). Therefore, a unique value of threshold cannot characterise all types of channel and does 
not necessarily predict the actual channel heads (Tarolli and Dalla Fontana, 2009; Passalacqua et al., 2010). 
Recent studies consider specific geomorphic characteristics of topographic surface directly derived from 
DEMs to choose the most suitable threshold to map channels (Gallant and Wilson, 2000; Tarboton and 
Ames, 2001; Tarolli and Tarboton, 2006). However, these constant threshold methods do not consider the 
hydrology (Furbish et al., 2009; Thommeret et al., 2010). 

Montgomery and Dietrich (1989) and Dietrich and Dunne (1993) found that the location of channel heads 
changes rapidly in response to increased runoff per unit area. However, these approaches assume a uniform 
input of precipitation across the catchment, and every cell would receive the same volume of water. If the 
rainfall input is not uniform, the sourcing of water units will vary across the landscape in distribution and 
quantity. Consequently, the input is independent from the general flow direction map and constitutes a 
separate layer which acts as an independent parameter for precipitation. Recent studies suggest the use of 
logistic regression (LR) can produce the most accurate channel networks (Heine et al., 2004; Jaeger et al., 
2007). The logistic regression model (LRM) is applied in this paper because of its flexibility in assumptions 
where discrete variables can be incorporated (Tabachnick and Fidell, 1996). 

The aim of this paper is it to develop a CIP model based on LR, and to test model performance in extracting 
channels heads, channels, and detecting disconnected channels. The study area is part of the Lower Cotter 
experimental catchment which has rainfall, discharge and LiDAR data available. These existing data sets 
provided the opportunity to explore and test new analysis procedures for mapping channel networks  

2. METHOD 

2.1. Study Site 

The study sites are 
located in an alpine 
setting on the Brindabella 
range (184 km2), south-
eastern Australia (Fig. 1).  

These watersheds are 
selected for three reasons: 

a) The availability of 
LiDAR DEM and 
detailed independent 
field based network 
location datasets, in 
order to show the 
accuracy of the 
proposed method for 
forested environment 

 
Figure 1. Location of the study area on the Lower Cotter experimental 

catchment
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with a complex morphology. 

b) The geology is simple and homogenous, thereby minimising the influence of geologic variability on 
surface hydrology, while providing topographic variation in slope, curvature and aspect. 

c) Variation in rainfall due to orographic effect. 

Pago catchment is the calibration site and it drains 0.15 km2 of moderately sloped (15°) area, with elevation 
range from 1209 to 1368 m. Ferny and catchments 1, 2 and 3 are validation sites. They drain a combined area 
of 2.3 km2, have an elevation range from 1024 to 1368 m and an average slope of 14.3°. Average annual 
precipitation is 980.4 mm for the study site. The LiDAR-derived DEM (1 m resolution) was resampled using 
the bilinear method to 10 m resolution for the CIP model. 

2.2. Physical Settings 

Terrain variables used to fit the CIP model were derived from the DEM for the study site. Rainfall data at 1-
minute interval are available from 1971 to 1985, and were aggregated into average annual rainfall. The D∞ 
flow algorithm (Tarboton, 1997) was applied to the DEM, constituting an aggregated rainfall layer which 
acts as a parameter for precipitation. The rainfall surface assumes a rainfall accumulation direction based on 
the DEM. The accumulated rainfall surface was generated using:  ܣ ܲ = ∗షభାାଵ   (1) 

where APi = accumulated rainfall at receiving cell i, P = precipitation, and n is the number of cells draining to 
the upstream cell (i-1).  

Where rainfall estimates are required for a single grid, values of the accumulated rainfall surface are first 
derived, and then used to generate rainfall sequences. The output table contains a row for each raster cell in 
the study site and a column for each of the variables of interest for use in statistical packages.   

2.3. Model Description 

The CIP model was based on the techniques 
described in Conrad et al. (2003) except they use the 
LR to identify where ephemeral flow begins and 
where it carries water in direct response to 
precipitation. The calibration process was carried out 
as shown in Fig. 2. To build the calibration data table 
for LR, physical parameters (Table 1) were sampled 
at each cell in the calibration site. 

Table 1 Dependent and independent variables used 
in regression model predicting the occurrence of channels 

Variable Description 
CI (1/0) Presence/absence of a channel 
LNA Natural log of flow accumulation area (m2) 
E Elevation (m) 
LS Local Slope (degree) 
PC Plan Curvature (m-1) 
AP Accumulated Rainfall (mm) 

Note.  Profile curvature was not included due to its high correlation with plan curvature. 

2.4. Model Calibration 

The LRM was applied to the DEM to predict the channels as absent (coded 0) or present (coded 1). For 
channel network delineation, only independent variables correlated with the response and found to be 
statistically significant (P < 0.05) were kept in the model. Parameters LNA and E could not be used to create 
the equation for determining the probability of channel initiation based on a 0.05 significance level. 
Therefore, the LRM was simplified where the parameter LS, PC, and AP are selected. Table 2 provides the 
calibration results of the CIP. PC was highly significant in the LRM. The negative coefficient on PC 
indicates that the concavity characteristic of valley cross sections is associated with channel incision. Overall, 
the LRM predicting the probability that a cell contains a channel performed very well (0.731) with the high -
2 Log likelihood and chi-square statistic (Table 3). Pseudo R-Square U (uncertainty coefficient) indicates the 
CIP model predicted 58.6% of the variability in the variable.  

 
Figure 2. Diagram of a statistical spatial analysis 
procedure used to conduct the logistic regression
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Table 2 Results of logistic regression using presence of a channel as the dependent variable 
Variable Coefficient Standard Error Significance exp(β) 95% Confidence Interval for exp(β) 

Lower Upper 
Constant 72.726 22.596 <0.001    
LS -0.380 0.049 <0.001 0.684 0.622 0.752 
PC -2.052 0.159 <0.001 0.128 0.094 0.176 
AP -0.065 0.020 <0.001 0.937 0.902 0.974 

Table 3 Statistical summary of the CIP model 

Significance 
-2 Log Likelihood 
(Hosmer and Lemeshow, 1989) 

Chi Square Pseudo R-Square U 

0.731 328.771 447.722 0.586 

Accordingly, the CIP model applied for this paper is: ܼ = 	72.726 − 0.38	 × ܵܮ − 	2.052 × ܥܲ − 	0.065 ×  (2)  ܲܣ
The response function where is the estimated probability of channel presence: ߎ = ଵଵାషೋ  (3) 

2.5. Field Surveys 

Field surveyed data on channel head location and continuous channels for use in the CIP model were 
collected in summer of 2010 and winter of 2011. GPS points were collected in both drainage systems along 
selected channels. The consequent channel network depends on the decision rules and criteria for channel 
head identification (Drummond, 1974). This paper was based on a field survey which followed specific 
criteria to define the channel head and hence its location. In the published literature and government grey 
literature on streams, there is considerable variation in criteria used to describe the elements of the fluvial 
system. This paper distinguishes between headwater stream (stream head) and channel head which are often 
referred to interchangeably. The stream head (starting point of surface water expression) is difficult to 
predict, because it may extend up an unchanneled swale above a channel head by overland flow, or shift 
down as the water table shrinks when weather is dry. The channel head or CIP is the starting point of channel 
network (Montgomery and Dietrich, 1989).  

This study applies the following criteria to determine the starting point of the channel network. These criteria 
also enable the channel network to be delineated by hydro-geomorphic modelling.  

a) The Protection of the Environment Operations Act 1997 (Forestry Commission of NSW, 2011) defined 
the channel head as the upstream limit of concentrated flow that carries only water in direct response to 
precipitation and one or a combination of the following: 

i. Bank height/channel depth > 0.03m depth 
ii. Channel width at bankfull from 1 to 5 m 

iii. Evidence of active erosion or deposition 
b) Continuous channel extending for at least 5 m downstream from the channel head (Jaeger et al., 2007). 

2.6. Model Performance Measures 

For comparison, channel networks were also derived for the study sites by using a constant area threshold 
(CAT). The application of CAT was carried out using the TauDEM extension within ArcGIS (Tarboton, 
1997).  

Modelled channels are assessed for channel network accuracy against field-mapped channels and include 
seven accuracy measures that describe the channel network. 

a) The channel length was obtained by measuring all the drainage in a subcatchment. 
b) A top-down stream order system (Strahler, 1952) is used to classify stream segments based on the 

number of upstream tributaries.  
c) The drainage density was computed from total identified channels taken from GIS attribute tables and 

dividing them by the drainage area which was held constant for all networks of the catchment.  
d) The channel head is represented by the end at the streamlines extracted. In the case in which the field 

survey did not identify the channel head, that particular location was excluded. 
e) The distance from the field-surveyed channel head is defined as minimal distance that between the 

modelled channel head and the field-surveyed channel head. 
f) The number of cells that are accurately classified as channels or non-channels.  
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g) The percentage of correctly identified channel and non-channel cells (errors of omission and 

commission). 

3. RESULT AND DISCUSSION 

3.1. Channel Network Extraction 

The CAT used to define 
the drainage area at 
which channels were 
initiated was set at 6670 
grid cells (0.07 km2) for 
the study site. Selection 
of this threshold value 
was assisted by 
comparisons of the 
resulting flow 
accumulation surface 
with the field-surveyed 
channel head in the 
calibration site. 

The CIP model was 
used to predict the 
probability of channel 
presence for each cell of 
the DEM in the study 
area. The resultant data 
layer can be used to 
generate channels by 
designating a threshold 
probability as indicating the presence of channels. A probability threshold of 0.5 (i.e. cells with values > 0.5 
are considered part of the channel network) was selected to represent the modelled channel network. 
Converting the modelled channel raster cells into a topologically correct vector drainage network was 
completed by tracing the downstream cost path of each channel-designated cell to the outlet point. Fig. 3 
illustrates channels identified using the CIP model compared with TauDEM derived channels. 

3.2. Performance Measures 

Table 2 shows five accuracy measures that describe the modelled channel network in the Ferny catchment.  

Table 2 Predictors derived from the channel network extraction methods in Ferny catchment 
Hydrologic Predictor CAT CIP 
Total channel length (km) 1.71 1.13 
Stream order 2 2 
Drainage density (km/km2) 
(% error) 

1.68  
(+165) 

1.11  
(+75) 

Number of channel head identified 3 2 
Distance from the field-surveyed channel head (km) 0.78 0.50 

Using a CAT overestimates total channel length and drainage density 165 %. The over-prediction in the 
validation site is due to the relative smaller contribution area (0.07 km2) calibrated in Pago catchment. In 
contrast, the CIP modelled channel show slightly lower overall length (Fig. 3). Therefore, the CIP model 
results in a more accurate identification of channel extent.  

The CAT method is valid for mapping locations of higher-order (4th order) streams in large basins if 
sufficient resolution DEM is available (James and Hunt, 2010). However, the stream order was insensitive to 
the method in the study site. 

The drainage density derived from the CAT method is greater than that from the CIP model. The CIP 
modelled channel network suggests that the delivery of water and sediment is less efficient than would be 
expected based on channel networks derived from the TauDEM. The CIP model appears to have the potential 
to improve on the CAT method, suggesting the channel initiation is likely to be influenced by hydrology and 
geomorphology in the catchment.  

(a) (b) 
Figure 3. Channel network with channel heads observed in field (dot mark): 

(a) CIP model (b) TauDEM 

Contribution Area 
= 0.65km2 

0.52 km2 

0.26 km2 

0.23 km2 
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In TauDEM, the channel was traced continuously downstream from the initiation point with no possibility of 
detecting the presence of discontinuity. The CIP model decides which channels to trace based on the 
presence of a channel in each cell (Eq. 3). This suggests that the chosen thresholding criteria serve the 
purpose of identifying disconnected channels.  

The large distances between the field surveyed and the modelled channel initiation points mean that the area 
thresholding criteria are geomorphologically inappropriate for the study site. This result suggests that a 
unique value of threshold cannot characterise all types of channel and does not necessarily predict the actual 
channel heads (Tarolli and Dalla Fontana, 2009). In these test catchments, the use of LRM can produce more 
accurate channel networks. The CIP model indicates that local slope is statistically significant because the 
proportion of precipitation that occurs as surface runoff is positively correlated with slope on the landscape. 

An error analysis for each of the methods is provided by the percentage of correctly identified channel and 
hillslope cells and errors of omission and commission (Table 3). 

Table 3 Errors of omission and commission from grid cell counts for the study site 
Error Predictor CAT CIP 
Channel: Actual channel cells correctly identified (%) 82.9 100 
Commission: Actual channel cells incorrectly identified (%) 17.1 0 
Hillslope: non-channel cells correctly identified (%) 99.7 100 
Omission: non-channel cells incorrectly identified (%) 0.3 0 

The difference between channel networks is a trade-off between errors of omission and commission (James 
and Hunt, 2010). For example, CAT method identified a larger percentage of channel cells with higher errors 
of commission, but it committed lower errors of omission. It is due to the low-gradient study area which has 
fewer channels. The small difference in hillslope reflects that fact that total precision is driven by the number 
of channel cells that are correctly classified in the subcatchments.  

The CIP modelled channel network provided 100 % of grid cells correctly classified, suggesting that 
identifying channel and non-channel cells through LRM is more accurate in the study site. The close statistics 
between channel mapped using CIP and the field survey provides an opportunity to consider the temporal 
variability (rainfall) improving channel network. Although CIP model resulted in a precise estimate of actual 
channel than the CAT method, this can be achieved with a near perfect compensation of false channels and 
missed channels.  

4. CONCLUSION 

Traditional approaches based on an area threshold do not recognise the importance of hydro-geomorphic 
processes such as rainfall required to increase the predictive quality for channel network. In this situation, the 
LRM can in principle demonstrate that it is possible to determine a channel head which is more accurate by 
considering hydrologic drivers. This paper presents a comparison of the capability of two channel extraction 
methods in extracting the channel network, capturing channel heads, detecting relevant channel continuity in 
the Lower Cotter catchment of southeast Australia. The CIP model captures channel discontinuity, while the 
TauDEM would have not been able to highlight the presence of these disruptions, as channels would be 
traced continuously throughout the basin. Therefore, the CIP model is capable to distinguish a continuous 
and disconnected channel that is important for forest management. The CIP model represents a new approach 
for advancing automatic feature extraction and thus advance the study of channelised processes in terms of 
better understanding of hydro-geomorphic form. There are two avenues of investigation which can be 
explored for further study. Firstly, due to time and resource constraints, variables used to develop the CIP 
model were limited to the terrain derivatives that could be measured from the DEM and rainfall records. The 
additional variables such as vegetation and soil properties will be considered in future work, but could not be 
included in this initial feasibility phase of the project. While this research only concerned the 10m DEM, it is 
important to study the effect of data resolution on the final outputs. It is necessary to illustrate the change in 
distance between modelled channel head location and field-verified channel head location for different DEM 
resolutions. Recently, a Light Detection and Ranging (LiDAR) derived DEM has been used for calculation of 
slope for headwater channel network analysis (James and Hunt, 2010). In the study site, LiDAR elevation 
data are available. This will be used to detect the areas of convergence related to channelised processes under 
forest cover, thus potentially more accurate in identifying and mapping headwater streams.  
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