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Abstract:  Information on population growth and spread of a significant endemic pest such as the Queensland 
fruit fly (Qfly; Bactrocera tryoni) is highly valuable to biosecurity regulators wanting to evaluate the benefits of 
surveillance under horticultural Area Wide Management (AWM) schemes. Unfortunately, directly observing a 
growth model or surveillance performance is not possible due to data constraints. This paper presents a set of 
novel methods to infer key population and surveillance parameters from available data for a jump-diffusion 
model. This will form the basis of an economic analysis of AWM for the Sunraysia Pest Free Area (PFA) across 
south east NSW and north west Victoria.  

A number of jump-diffusion models of invasive species have now been implemented to represent the different 
modes of dispersal available to an invasive species. However, as models become more sophisticated we 
encounter the perennial problem of model calibration. We implement a hierarchical model composed first of 
landscape ‘jumps’ by Qfly into the PFA, and represented by a time and spatially varying probability of 
declarable outbreaks derived from ~150000 monitoring events since 1998. The jumps are climate driven, with a 
set of time-varying Climex indices of climate, and dependent on land use, road density and other geographic 
factors. Here, calibration of the ‘jumps’ is by estimating a generalized additive model. 

Assigned to each outbreak incident is an outbreak ‘duration’. This duration attribute is of key interest as it will 
largely determine variable costs in a proposed Benefit Cost Analysis (BCA) of the surveillance methodology 
and new technologies. Early detection is often associated with smaller populations, lower control costs and more 
rapid control, and hence a decreased duration. The duration attribute is thus modeled directly as a function of the 
number of Qfly initially captured. Initial captures can in turn be modeled through an integro-difference model of 
local population growth and diffusion. However, (i) the initial location of outbreaks are unknown; (ii) the 
probability of detection by the monitoring network needs to be estimated; (iii) the local landscape is assumed 
homogeneous in the absence of further information; and, (iv) local population growth and dispersal are known 
to be time-varying. Ad hoc calibration methods such as least squares optimization or regression modelling were 
used to derive both a time invariant, half Cauchy dispersal kernel and the probability of detecting a local Qfly 
population, by drawing on results from the published literature. Both of these ad hoc calibrations suffer from 
significant bias which in future only spatially referenced and time stamped capture data can resolve. 

Population growth parameters for the integro-difference model were generated from an existing stage-structured 
and spatially non-explicit model of Qfly population dynamics. A metamodel enabled these growth parameters to 
be linked to the weekly Climex indices. A time-varying distribution of initial population numbers at time of 
arrival (i.e. before detection), and a consequent distribution for the time to population detection, could then be 
simulated. 

The full procedure allows elements of a monitoring regime, such as the detection efficiency of individual traps 
or trap density, to be economically valued in future work. While some of the calibrations in this paper are data 
constrained, data needs for implementation of integro-difference models in the economic valuation of 
monitoring networks are clear: georeferencing and time stamping of captures, experimental controls for 
determining growth and mortality, and ease of accessibility to such data to facilitate ready modeling. 
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1. INTRODUCTION 

Benefit-Cost Analyses (BCA) of area wide management schemes (AWM) for Qfly have regularly been 
undertaken on a regular basis  to justify public expenditure on AWM schemes such as the Sunraysia pest free 
area (PFA; PricewaterhouseCoopers 2001; Ha et al. 2010). However, none attempt to represent the underlying 
processes of ‘propagule rain’ of the Queensland fruit fly (Qfly; Bactrocera tryoni) into the PFA and wider Fruit 
Fly Exclusion Zone (FFEZ) from endemic populations in neighbouring regions. Such processes can be 
described as jump-diffusion (Shigesada et al. 1995), where an invasive organism has more than one mode of 
dispersal requiring separate process descriptions, or where dispersal occurs at both large (jump) and local 
(diffusion) geographical scales.  

Once a Qfly outbreak occurs within the FFEZ then producers lose access to certain restricted markets (e.g. 
Japan) unless they apply post-harvest treatments. Rules defining an outbreak are the result of negotiated 
agreements among trade partners, more so than by explicit reference to the landscape ecology of the Qfly. One 
market rule, of monitoring weekly on a 400 m grid in towns and a 1000 m grid in production areas, incurs 
significant infrastructure and labour costs. The market rule thus defines a monitoring regime that is agreed by 
trading partners to be ‘biosecure’. While economic efficiencies may be gained by varying the monitoring regime 
(e.g. by varying the monitoring grid), an explicit linkage of the economic benefits of monitoring to a reduced 
ecological risk of undetected outbreaks is generally not made within BCAs. 

One mantra of monitoring is that earlier detection leads to reduced control costs later on, as at the time of 
detection invasive populations are likely smaller and easier to eliminate. A manager would thus seek to invest in 
monitoring to the extent where the marginal cost of monitoring equals the marginal benefit in saving later 
control costs (Kompas & Che 2009). Time to detection, or how a jump-diffusion process interacts with a 
monitoring scheme, should therefore be modelled explicitly. We describe in Section 2 a probabilistic ‘jump’ of 
Qfly into the FFEZ area that is climate dependent, and model the diffusion element using a spatially and 
temporally explicit integro-diffusion model at the local scale (Kot & Schaffer 1986). While the jump process 
can be said to be well defined from the available monitoring data, the diffusion process is not, and requires 
calibrations that are the focus of Section 3. Much of the interaction between monitoring and ecological process 
occurs at the diffusion scale in terms of the time to detection distribution. However, to value ecological risk then 
the jump-diffusion process needs to be simulated from a probability mechanism generating initial population 
sizes at different times of year (Section 4). Initial population sizes, and a given time sequence of climate, will 
determine both time to detection and initial population captured at the declaration of an outbreak. It is this initial 
capture that can be empirically related to the duration of an outbreak and the economic costs of associated 
market access loss. Section 5 provides concluding remarks. 

2. MODEL 

Leptokurtic (fat-tailed) distributions such as the Cauchy can mimic jump-diffusion processes, however, the jump 
and diffusion processes can also be modelled explicitly. For example, Carrasco et al. (2010b) provide a model of 
international transport, regional transport and local diffusion of the western corn rootworm, Diabrotica 
virgifera, with the probability of long distance jumps linked to the location of road and rail networks in Austria. 
For Qfly, an extensive database exists for the weekly monitoring of a grid of monitoring points across the FFEZ, 
with ~150000 monitoring events recording ~7000 capture events, leading to 141 defined outbreaks since 1998. 
Road density (km/km2), land use and Climex indices of climate (e.g., cumulative drought stress and day degrees 
of development; Yonow & Sutherst 1998) were found to have statistically significant relationships with the 
probability of outbreak using a logit link generalised additive model. Spatio-temporal autocorrelation structures 
can be placed on a model of the capture events, but a model translating capture events to outbreaks given some 
time-varying ‘risk’ is necessarily simple given the small number of outbreaks in total. Furthermore, this model 
of the ‘jumps’ is potentially subject to both convergence problems and the Hazuck-Donner phenomenon of large 
but non-significant parameter estimates due to the proportionately small number of captures relative to 
monitoring events (Venables & Ripley 1999), and is at the margin of where extreme value theory may be more 
appropriate. The duration of outbreaks, defined as time to market recertification, is also known and has been 
modelled by a waiting time distribution dependent on climate and spatial variables.  

While the jump process is readily modelled from the available data the local diffusion process is unobserved. 
Assuming a single point of arrival, a population of unknown size begins growing and spreading until contacting 
a sentinel monitoring point. Upon contact the population will have some probability of being detected, and in 
following time periods. All that is observed is the initial population captured at the declaration of the outbreak. 
Once the population is detected, with captures above some threshold level, an outbreak is ‘declared’ and 
eradication measures undertaken to suppress the diffusion process.  
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A model of these initial population numbers for a given monitoring grid resolution provides a basis for valuing 
the benefits of the monitoring grid, since initial population numbers are known to influence market costs 
through their correlation with time to pest free recertification (i.e., outbreak duration). Integro-difference 
models, as spatially and temporally explicit models, can be integrated with an observation process as follows 
(Kot & Schaffer 1986; Hooten & Wikle 2008): 

௧ܰାଵሺݔሻ = නܪ௧൫ ௧ܰሺݕሻ൯݇௧ሺݔ, ሻݕ  ݕ݀

where ௧ܰሺݔሻ is the population size at location ܪ ;ݔ is a growth operator, such as the logistic growth equation ܪሺܰሻ = ሺ1ܰݎ − ܰ ⁄ܭ ሻ with ݎ an intrinsic growth rate and ܭ a carrying capacity; and ݇ a dispersal kernel. Both ܪ and ݇ can be time-varying (with ݐ), spatially varying and/or stage structured functions. Computation is over a 
grid using fast Fourier transforms. A simple observation process can be defined for the number ݖ௧ of Qfly 
captured during a sterile Qfly release-capture experiment: ݖ௧ሺݏ|݊ோ, ,ோݐ ݅ሻ~݊݅ܤ൫, ݊௧ሺݏ|݊ோ, ,ோݐ ݅ሻ൯ 
where ݏ ∈ ܵ is a monitoring site; ݅ ∈   ோ is a release date; andݐ ;a release site; ݊ோ is the number released (at ݅) ܫ
the proportion of the spatially local population ݊௧ሺݏሻ that is captured. In the case of a release-capture experiment 
then ܪሺܰሻ is a (time-varying) mortality rate, and where there are multiple release dates and release sites then ݊௧ሺݏሻ is an integration of the integro-difference model over ܫ, ோܶ and ோܰ. Release-capture experiments can 
therefore supply a potential source of data for calibrating parameters of the integro-difference model.  

In a purely monitoring context the key sources of uncertainty are the unknown initial population, initial location 
of arrival, and a stochastic detection process. The probability of detection must relate to the scale of the grid 
used to depict the landscape in the Fourier space computation. Further stochastic elements can be placed on 
either the ௧ܰሺݔሻ and/or ݖ௧ሺݏሻ at each time step. By running the integro-difference model over different 
stochastic scenarios then a distribution of the times to detection can be derived as the time between first arrival 
and first detection of any given arrival, and the probability of that arrival. The key inputs of the model that 
require calibration before the model can be run are then: (i) weekly dispersal kernel; (ii) probability of detection; 
(iii) parameters of the weekly growth function; and, (iv) initial population number.  

3. DATA AND CALIBRATION 

Table 1: Matching Observed Dispersal with Distributional Percentiles (%) 

  Dispersal Distance (m after 13 weeks) 

Distribution Parameter Values Median Dispersal (m) 308 600  1000 

Observed - - 95.00 98.80   99.76 

Half-Cauchy ߣ = 2.29; 	߬ = 1.01 29 95.09 98.50   99.97 

Normal ߪ = 43.54 105 95.02 99.98 100.00 

Cauchy ݈݁ܽܿݏ = 24.2 25 95.01 97.43   98.46 

Calibration 1: Weekly Dispersal Kernel 
A dispersal kernel needs to be specified before calculating the time to detection distribution from an integro-
difference model. Data are reported as distances equating to the percentile of total captures over a thirteen week 
period from the origin of release (Table 1; Dominiak et al. 2011). However, mark-release-capture experiments 
using sterile male Qfly, recording both repeated capture and release points and times (e.g., Dominiak et al. 
2003), would be better suited but were unavailable. Ideally, integro-difference models would be fitted to the data 
directly using hierarchical Bayesian methods similar to those reported by Wikle & Holan (2011). However, 
uniquely identifying dispersal, growth and probability of trap detection parameters is difficult in this context 
(Hooten & Wikle 2008). Instead, percentiles of captured releases at different distances can be used to determine 
a weekly dispersal kernel in an ad-hoc manner similar to that of Carrasco et al. (2010a) by minimising a least 
squares criterion. Calculating the weekly dispersal kernel from the 13 week dispersal kernel is more difficult for 
the half Cauchy than for the Gaussian: unlike the Gaussian the convolution of half-Cauchy distributions does 
not possess an additive scale parameter, except approximately when estimating tail probabilities (Ramsay 2006). 
Parameters for the half Cauchy weekly dispersal kernel were searched for by convolving the dispersal kernel 
repeatedly, via fast Fourier transforms. The estimated half Cauchy dispersal kernel was characterised by a 
weekly dispersal of 9 m at the 95th percentile (with median dispersal ߣመ = 2.2854 and scale ߬̂ = 1.0131). Note 
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that leptokurtic dispersal kernels have an accelerating rate of population spread with time (Shigesada et al. 
1995). 

Calibration 2: Probability of Detection 
Dominiak et al. (2003) report a time-varying probability of capture, ranging from 0.00004% to 0.11%, across a 
grid of 58 monitoring points spaced ~	400 m apart following the monthly release of sterile Qfly. Confounding 
factors in this estimation include a time-varying mortality (related to food availability and local climate), time-
varying dispersal and perhaps time-varying activity (related to temperature and describing shifting sensitivity to 
the cue lure traps employed). Furthermore, capture rates were reported as a proportion of the Qfly released in 
the previous month, and did not account for the survival of Qfly released in previous months. An assumption of 
a time constant probability of detection should be reasonable if the other time-varying processes can be 
accounted for. With only 11 monthly data points, this suggests a simple model: 

ln ௧ܥ = ߚܴ௧ିଶ
ୀ +  ሻݐሺݏ

where ܥ௧ is the Poisson valued number of Qfly captures in month ݐ; ܴ௧ the number of Qfly released; and ݏ some 
smooth function of ݐ (here a cyclic cubic spline with few knots or degrees of freedom). Data are too few to 
provide the model with a useful autocorrelation structure. Constraints could be placed on the vector ߚ, such as ߚଶ ≤ ߚ ଵ to reflect increasing mortality with time, andߚ ≥ 0. However in this particular case an assumption ߚଵ ≤   may not hold true if an accelerating rate of population spread is assumed (i.e. few Qfly will be detectedߚ
in the early weeks due to a lack of dispersal). The model can be estimated from the current data, but with so few 
data confidence bounds about parameter estimates will be vague, a difficulty compounded by the extremely low 
rate of recapture.  

Estimates of ߚ and ߚଵ were approximately 0, and only  ߚመଶ = 0.0001184% was statistically significant and thus 
retained. The time-varying smooth with four degrees of freedom shows characteristic peaks of Qfly survival and 
activity in late spring/early summer and autumn (Figure 1; adj-ܴଶ = 89.3%). The implication here is that 
releases two months prior to capture are more of a determining factor for capture rates than releases in either the 
current or previous months. This conclusion is supported in part by the weekly dispersal kernel where after two 
months (i.e. eight weekly convolutions) the dispersal at the 95th percentile is 173 m. Note that a 400 m 
resolution of the monitoring grid has average distance from the monitoring grid to a randomly located release of ~140 m. Two model assumptions can therefore be made: (i) Qfly are expiring after two months (given that 
further time lags ݐ − ݇	ሺ݇ > 2ሻ have zero estimates when added to the model); and, (ii) monthly capture rate per 
trap is ~1 4⁄  of the capture rate of the entire grid of 58 monitoring points. The justification for the second 
assumption is that given the slow rate of dispersal and comparatively rapid mortality of individual Qfly then few 
of the monitoring points on a regular array, apart from the four points adjacent to a release site, will contribute 
much towards observed captures. 

 

Figure 1. Time-Varying Component of 
Pr(Capture) 

 

Figure 2. Estimating Logistic Growth Rates From 
A Stage Structured Population Model 
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Calibration 3: Weekly Growth Rate 
The weekly growth rate is undoubtedly time-varying, however, experimental methods for inferring these 
growth rates for field conditions is both difficult and costly (Sonleitner 1973), particularly over large 
geographical extents with varying local climes. For this purpose no suitable data exist. One feasible approach 
to this problem is to apply a stage structured population model calibrated for Qfly and previously 
implemented in the Dymex modelling environment (Yonow et al. 2004). The key driver of the population 
dynamics are a set of Climex derived climate indices, including a soil moisture balance and cumulative day 
degrees of development (Yonow & Sutherst 1998). As we have extrapolated climate on a weekly basis over 
the landscape for a one arcminute resolution grid following ANUSPLIN methods (Hutchinson 1995), then 
growth rates can in principle be predicted at each landscape location. Growth rates for a logistic equation 
must first be calculated from a set of Climex indices, progressing over time since the arrival (or release) of a 
Qfly population. However, output from the stage structured population model returns only population 
numbers. Rather than filtering all the Climex indices through the population model, it would be practical to 
generate growth rates from the Climex indices directly. This calls for a metamodel estimated by regressing 
growth rates computed from the population model output on the Climex indices (Figure 2).  

Growth rates and carrying capacity for a fixed set of Climex values were estimated from a long time series of 
adult population numbers generated by the Qfly population model (5000 days). Due to the oscillating 
population behavior likelihood methods for parameter estimation were not stable, and an ad-hoc approach 
was adopted. The carrying capacity was calculated as the long term average of population numbers, after 
excluding a burn-in period (1000 days). A smooth spline was then fitted to the data, and the point of 
maximum slope located (occurring within the first population oscillation; Figure 2).  Growth rate is then the 
maximum slope adjusted by the carrying capacity by inverting the logistic growth equation. A ‘delay’ period 
is also estimated given that the stage structured population model exhibits a delay between egg laying and 
pupae emerging as adults, thereby providing a horizontal translation to the fitted logistic curve. 

A quasi-Monte Carlo scheme provides a sampling design across the domain of all Climex indices (computed 
from Jan 1991 to Dec 2010) on which to calculate parameters of the logistic growth equation. Initial 
application of 10000 design points over four climate indices (max temp, shallow soil moisture, deep soil 
moisture and rainfall) returns adj-ܴଶ = 80.7% and 89.0% for smooth tensor predictions of the growth 
parameter ݎ and carrying capacity ܭ, when estimated independently and following stepwise model selection 
(27 and 36 degrees of freedom respectively).  

4. GENERATING TIME TO DETECTIONS AND INITIAL POPULATION SIZE 

The other key unknown variable in determining an integro-difference model for Qfly is the initial population 
size. A distribution of initial population numbers needs to be deduced to evaluate the risk of having an 
establishing population grow significantly before being detected, preferably with some dependence on 
climate or time of year. If the sequence of Climex indices leading up to an outbreak is known then the 
probability of observing a captured number can be determined by ‘deconvoluting’ the integro-difference 
model at each previous time step. This requires only the probability of detecting Qfly, a growth parameter, 
and dispersal kernel at any point in time, and for which the previous calibrations have been constructed.  

For each time ݐ the probability of an outbreak beginning in time ܨ௧ determines a time-varying distribution for 
the time to detection expected from the integro-difference model, for a specified monitoring grid (Algorithm 
1). This is achieved by ‘unconvolution’, a likelihood inference procedure for statistically implicit models 
(Diggle & Gratton 1984; Hazelton 1995), to determine the probability ௧ܲ,ሺܼሻ of observing captures ܼ given 
arrival time ݐ and initial population size ݊. Note that the arrival time determines the historical sequence of 
growth parameters imputed from the metamodel and applied to the integro-difference model for each 
observed capture. The full empirical distribution defined by matrix ܩ is used throughout, with distributional 
moments such as the time-varying expected number of captures ܧ௧ readily derived. 

Now that a time-varying distribution for initial populations has been estimated, the time to detection (Error! 
Reference source not found.) and captured population at declaration of the outbreak can be simulated for 
different monitoring grid resolutions and at different times of year. These observed captures are then used to 
predict the duration of the loss of pest free market certification. As the costs of establishing and servicing 
monitoring grids of different resolutions is known then expected changes in time to detection, and variability 
in time to detection, can be valued when the cost of market access loss is calculated. 
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Algorithm 1    Generating a Time to Detection Distribution 

Initialise tolerance parameters .  ;permissible population numbers ܰ (suitably large) ;∗ݐ and ݈ݐ

Initialise number of simulations ܯ; 

Construct 1 × ܰ matrix ݐ ;ܩ = 1 (week); 

For each ݊ of ܰ initial population numbers 

Simulate ܯ times from integro-difference model, driven by Climex derived growth rates, to estimate probability ௧ܲ,ሺܼሻ	of 
observed captures ݖ for an infestation beginning the	ݐ௧ week prior to time  ݐ = 0; 

Let ܩ = the vector of ௧ܲ,ሺܼሻ; 
While ݐ < ∑ or ∗ݐ ௧ܲ,ሺܼሻ > .  ݈ݐ
ݐ  = ݐ + 1; 

 For each ݊ of ܰ initial population numbers 

Simulate ܯ times from integro-difference model, driven by Climex derived growth rates, to estimate probability ௧ܲ,ሺܼሻ	of observed capture ݖ for an infestation beginning the	ݐ௧ week prior to time  ݐ = 0; 

 Append vector ௧ܲ,ሺܼሻ to ܩ (row-wise); 

Compute both ܨ௧ = ∑ ௧ܲ,ሺܼሻ ܰ⁄  and ܧ௧ = ∑ ݊ ௧ܲ,ሺܼሻ ܰ⁄  for each ݐ. 
 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

1. The innovation of this paper is to 
provide a climate driven integro-
difference model of population growth 
and dispersal. This model interacts with 
a given monitoring regime, thereby 
linking ecological process, and thus 
ecological risk, with valuing the 
economic benefits of monitoring. 

2. The integro-difference model requires a 
number of calibrations, namely (i) 
weekly dispersal kernel; (ii) probability 
of detection; (iii) weekly growth 
parameters; and, (iv) initial population 
number. In this instance the first two 
elements were derived from data 
summaries reported in the existing 
literature, whereas the logistic growth 
function required a metamodel of a stage 
structured population model. 
Determination of the initial population 
distribution required a complex 
computation scheme.  

3. Calibrations 1 and 2 lack sufficient data 
to offer confidence intervals around the 
ad-hoc inferences. Furthermore, the 
current calibration of the dispersal kernel ignores the unobserved part of the underlying population, 
thereby introducing a significant overestimate of dispersal, with no captures made at the release origin. 
Calibrations 1 and 2 have also not been controlled for by measures of time-varying mortality rates. 

4. Sterile insect release experiments offer the opportunity to estimate dispersal and trapping rates more 
precisely using an integro-difference model approach, for which inference procedures have recently been 
developed. The difficulty in such an approach will be in providing estimates of mortality, and that the 
probability of detection is dependent on the spatial resolution of the model. Time-varying dispersal can 
readily be incorporated into the integro-difference model, among other model extensions. 

5. To facilitate ease of spatio-temporal modelling the biosecurity community should for maximum benefit 
make available sterile insect release-capture data that is both georeferenced and time stamped for each 
capture, and the underlying monitoring grid specified explicitly. A template for data sharing among 
modelers and field scientists exists in the highly successful LTER (long term ecological research) 
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network in the USA, which leads to significant value-adding of already published data. Without such data 
availability, any calibration and consequent modeling will be severely constrained. 

6. Sterile insect release-capture experiments are relatively cheap to implement in future given that existing 
monitoring networks in PFAs can be utilized. The difficulty will be the development of a control for 
mortality rates, and more generally of growth rates for wild populations. Seasonal and spatially 
heterogeneous food availability will likely play a key role in these population parameters. Releases could 
also differentiate between production areas (1000 m monitoring) where pre-harvest control is taking place 
and residential areas with no control (400 m).  
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