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Abstract: To help ensure the security of water supply to urban catchments, a popular policy choice is to 
promote the installation of domestic rainwater tanks. While yield is primarily considered, this policy also 
causes a change in urban-runoff stormwater volumes and consequentially, nutrient export.  

Modelling tools are used to predict the yield, volumetric reliability, overflow volume, and nutrient export that 
the deployment of rainwater tanks will cause. These modelling tools commonly utilise an up-scaling 
approach to analyse the behaviour of multiple tanks, where the performance of a single tank with average 
characteristics is linearly scaled up to represent a larger cluster of tanks.  

Previous research has shown that this up-scaling method significantly overestimates the yield and volumetric 
reliability (Mitchell et al. 2008), and underestimates the overflow volume of the cluster (Neumann et al. 
2011).  A sensitivity analysis of the parameters used to represent a rainwater tank (roof catchment areas, tank 
storage capacities, demand) was carried out, using on-hand data for Melbourne water demand, rainfall and 
maximum temperature (Neumann et al. 2011). It identified that the non linearity of the tank yield and 
overflow in relation to some of the model parameters means that the adoption of an “average” (i.e. spatially 
lumped) tank to represent the behaviour of the entire cluster is subject to significant errors.  

This paper establishes that, accordingly, nutrient export loads are also underestimated, and describes a 
stochastic water balance and quality model to effectively quantify the overflow nutrient load from a cluster of 
rainwater tanks at the catchment-scale. 

In 2008, to reduce mains water consumption the South East Queensland region made rainwater tanks 
mandatory in new detached dwellings. It is important to accurately estimate overflow nutrient loads 
discharged to stormwater to identify changes at the catchment scale caused by this wide implementation of 
rainwater tanks.  

The purpose of this paper is to apply the method described in Neumann et al (2011) and Maheepala et al 
(2011) to South East Queensland data, avoiding the limitations of spatial lumping of the performance of an 
average rainwater tank. This study examines the impact on overflow loads and volumes, and potable water 
savings at a catchment scale of a simulated cluster of RWTs in the Brisbane region, and also analyses the 
model’s sensitivity to geographic climate parameters. By using Brisbane water demand, rainfall, and 
maximum temperature data, this paper illustrates the effect that the varied climates of Melbourne and 
Brisbane have on the results of the model, via different rainfall and usage patterns. 

The results of this study for the Brisbane Local Government Area indicate an overestimation of volumetric 
reliability and yield, and an underestimation of the overflow volume and inflow load as well as the outflow 
load, which varies between 15% and 27%, depending on the nutrient. Therefore it is not recommended to use 
an average tank to predict the performance of a cluster of household rainwater tanks to find their contribution 
to potable water savings, overflow volumes and subsequent nutrient and sediment export to stormwater. 
Instead, we recommend using stochastic simulation of rainwater tanks, which will include the use of 
probability distributions to represent tank characteristics and stochastic representation of end use water 
demands, calibrated using local climate and observed demand and rainwater tank data. 
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1. INTRODUCTION 

Domestic rainwater tank (RWT) systems are a popular option to alleviate the demand on potable water 
supply. The benefits of household rainwater usage also include the reduction of downstream storm water 
peak flows, and pollutant loads, particularly nitrogen (Mitchell 2007). When a policy decision is 
implemented at a city or a regional scale, such as in the South East Queensland region where rainwater tanks 
are mandatory in new dwellings and most new industrial and commercial buildings (Queensland Water 
Commission, 2010), it is vital to be able to assess the impact of rainwater tanks on potable water savings at a 
city and/or a regional scale and runoff at a catchment scale. The common method of assessing the impact at 
the catchment scale involves modelling an ‘average’ household RWT system, and scaling the results linearly 
to represent a larger cluster of households. Several researchers (Maheepala et al. 2011 and Mashford et al. 
2011) showed that this method overestimates the average annual yield of a cluster of household rainwater 
tanks by about 18% for Canberra-based data and by about 14% for Melbourne based data. Mitchell et al. 
(2008) and Xu et al. (2010) also reported a similar magnitude of error for Melbourne-based data. In addition, 
Neumann et al (2011) examined the impact of ignoring the spatial variability of rainwater tank supplies on 
overflows from rainwater tank systems and subsequent nutrient discharges at catchment scale. They reported 
about 37% underestimation of catchment runoff and nutrient discharges using Melbourne data due to linear 
scaling up of performance of a single rainwater tank. 

If an inaccurate modelling method is used to justify a city or regional-scale implementation of RWT systems, 
in reality the implementation policy is unlikely to reach targets for the reduction of potable demand and 
nutrient discharge.  

The purpose of this paper is to apply the method described in Neumann et al (2011) and Maheepala et al 
(2011) to South East Queensland data, avoiding the limitations of spatial lumping of the performance of an 
average rainwater tank (i.e. linear scale-up method). This is done by stochastic simulation of a cluster of 
household rainwater tanks using the rainwater tank model reported in Mitchell et al. (2008), hereafter 
referred to as the RWT model. 

As part of the study, the RWT model has been enhanced to simulate in-tank routing and water quality, in 
order to simulate nutrient and sediment overflow loads, as well as overflow volume. Users of the RWT 
model can still stochastically simulate many households by defining distributions for household parameters, 
and now also benefit from more accurate modelling of the water quality within the RWT and therefore of 
discharged loads.  These simulated-households make up a more accurate representation of a large cluster of 
households spread across a catchment, a city or a region. 

This study examines the impact on overflow loads and volumes, and potable water savings at a catchment 
scale of a simulated cluster of RWTs in the Brisbane region, using the enhanced RWT model and a 
Stochastic Demand Generator model (Duncan and Mitchell, 2008) for toilet and clothes washer demand, 
calibrated to observed household end use data from Brisbane Local Government Area (Beal et al. 2010) for 
one and two person households. The results of this stochastic simulation are then compared to the common 
method of up-scaling an ‘average’ house. The study will continue for the next few months to calibrate the 
Stochastic Demand Generator model (Duncan and Mitchell, 2008) to other end uses in Brisbane Local 
Government Area (LGA) as well as Ipswich LGA, Sunshine Coast LGA and Gold Coast LGA. 

1.1. Brisbane Case Study Area 

In view of the South East Queensland region mandate that new dwellings must implement rainwater tanks 
(Queensland Water Commission, 2010), we study the Brisbane area to calculate the contribution these new 
RWTs will make to overflow loads of sediment / nutrient discharge to stormwater. This paper reports the 
impact of having rainwater tanks in one and two person households only. The work is in progress to include 
other plausible occupancy rates in the South East Queensland. As per (ABS 2006), the ratio between one to 
two person households in Brisbane is 22:34.  

The total simulation period was 50 years, from 1960 to 2010. The rainfall and evaporation time series were 
obtained from the Bureau of Meteorology Brisbane Regional Office (station 40214). During the period 1960 
to 2010, the mean annual rainfall was 1093 mm/year while the mean annual areal potential evaporation was 
1605 mm/year. 

2. METHOD 

To evaluate the over or under estimation of the rainwater tank overflow load caused by linear up-scaling of 
the performance of an average RWT, our method involved simulating the behaviour of a 5000 house cluster 

2325



Coultas, Maheepala, Towards the quantification of water quantity and quality impacts of rainwater tanks in 
South East Queensland 

of rainwater tank systems with varied parameters (roof area, tank size, initial and continuing losses, 
occupancy), hereafter referred as the variable case. The simulation of the performance of RWT cluster was 
carried out using the RWT model and plausible patterns of demand for toilet and clothes washers were 
generated using the Stochastic Demand Generator model. The variable case was compared with a second 
scenario that involved linear up-scaling of tanks with averaged values, hereafter referred as the mean case. 
The averaged parameters are computed from the distribution of parameters used in the variable case using 
arithmetic means.  

A number of measures were used to compare the performance of “variable” and “mean” cases. The measures 
were: average annual rainwater tank yield (i.e. the volume of water supplied by rainwater tanks on an average 
annual basis over the simulation period),  volumetric reliability (i.e. the total volume of water supplied by 
RWTs divided by the total target demand volume),  average annual overflow volume (i.e. the overflow 
volume of water from rainwater tanks on an average annual basis over the simulation period) and average 
annual total nitrogen (TN), total prosperous (TP) and total suspended solids (TSS) loads (i.e. the TN, TP and 
TSS loads on an average annual basis over the simulation period). 

2.1. Modelled Scenarios 

As mentioned earlier, two scenarios (or cases) were considered for the Brisbane-based data. They are named 
as Brisbane variable case and Brisbane mean case, to evaluate the affect of linear up-scaling on water 
quantity and quality performance of a rainwater tank cluster. In addition, results of the variable case of 
Melbourne-based data (obtained from Maheepala et al. 2011 and Neumann et al. 2011) are presented in this 
paper for comparison purposes. All these cases are described in Table 1. 

Table 1 RWT Model input parameters 

Note: ND1 = Normal Distribution as per Table 2. SGD2 = Stochastic Demand Generator 

Description Tank Roof Initial 
loss 

Continuing 
loss 

Demand 

Brisbane Variable case ND1 ND1 ND1 ND1 100 profiles generated using the SDG2 

Brisbane mean (arithmetic) case  2.6 106.8 0.634 14.9 Mean demand profile generated 

Melbourne Variable case ND1 ND1 ND1 ND1 100 profiles generated using the SDG2 

2.2. Simulation of water quantity and quality of a cluster of household rainwater tanks  

To simulate both water quantity and quality of a cluster of household rainwater tanks, the RWT model of 
Mitchell et al (2008) was modified to include nutrients and sediments. The original RWT model uses two 
modules to perform a continuous simulation: a rainfall runoff module to represent the roof and a storage 
model to represent the rainwater tank, as shown in Figure 1.The rainfall runoff module requires two time 
series as inputs: a rainfall time series, and a potential evaporation time series. It also has three parameters, the 
roof area, an initial loss which represent the depression storage, and a continuing loss which represents 
continuous losses due to splashing, gutter overflow, effectively reducing the roof runoff by a loss factor. The 
storage model uses a simple water balance to represent the rainwater tank, and it contains two inputs, the 
inflow from the roof and a demand time series, and one parameter, the tank volume. Evaporation from the 
tank and leakage losses are neglected by assuming the tank is closed and is leak-free. The model has the 
capability to represent requested demand (from the tank) for multiple end-uses. Besides rainfall, potential 
evaporation and demand, these parameters can be specified as either a single value or a continuous 
probability distribution. For a complete description of the model, the user is referred to Mitchell et al (2008). 

To improve nutrient export simulation, we implemented Puls method (Institution of Engineers Australia, 
2001) in-tank hydrologic routing in the RWT model. This algorithm models the behaviour of rainfall run-off 
as it flows through the rainwater tank. We further enhanced the model to include an implementation of the 
first order kinetic decay model (the “k-C” model) based on the “Continuous Stirred Tank Reactor” (CSTR) 
concept as described by Wong (2006). In addition to the k-c model, a stochastic pollutant generation 
algorithm was also implemented. The pollutant generation follows the method described in the MUSIC 
software v3 (CRC-CH 2005), where there is no correlation between the stochastic generated values between 
two subsequent steps.  
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Figure 1  Schematic representation of the rainwater tank model (source: Neumann 2011, 
adapted from Mitchell et al. (2008). 

RWT Model input parameters 
The variable case draws parameter values from the normal distributions specified in Table 2 to enable it to 
stochastically model a cluster of 5000 separate households. These parameters represent typical values 
(sourced from Mitchell et al. 2008) and will be modified by using the values relevant to South East 
Queensland as the study progresses towards to a full application in the South East Queensland. The 
arithmetic mean case models a single house using average values derived from running a large cluster of 
variable houses, the simulated results of which are then linearly up-scaled by multiplying by 5000.  

Table 2 Assumed normal distribution parameters and maximum and minimum values used to 
generate the variable case  

Parameter Min Mean Max Standard Deviation Rounding (i.e. precision) 

Tank capacity (kL) 0.1 2.5 20 1.5 0.1 

Roof area (m2) 25 100 400 50 5 

Initial Loss (mm) 0 0.5 1.7 0.5 0.01 

Continuing loss (%) 0 15 30 5 0.05 

To perform a geographical comparison, the Melbourne variable case uses the same variable case model 
parameters found in Neumann et al (2011), but only for one and two person households and for Toilet and 
Clothes washer end-uses in order to be comparable with the available Brisbane data. For details of 
parameters of the Melbourne variable case, see Maheepala et al (2011) and Neumann et al (2011). For the 
water quality simulation, the values used for k and C* are the default MUSIC model values for each of TSS, 
TN and TP (CRC-CH 2005). The Concentration inflow rate (mg/l) uses a log-normal distribution with a 
minimum of 1, a mean of 20, maximum of 200, rounding of 1, and standard deviation of 47. 

2.3. Generation of end use demand  

As mentioned earlier, the Stochastic Demand Generator of Duncan and Mitchell (2008) was used to generate 
demand time series of end uses that are representative for Brisbane.  The model was calibrated to Brisbane 
for one and two person households. 

Stochastic Demand Generator (SDG) Model Input Parameters 
Input data for the SDG model (Duncan and Mitchell, 2008) are shown in Table 3. However, at the time of 
undertaking the study, the format of the measured data available for each end use in Brisbane LGA was in 
litres/person/day (or l/p/d) (Beal et al, 2010). Hence, we considered the variables shown in Table 4 as 
parameters of the SDG. Calibration of the SDG model involved calibration of these parameters to obtain 
simulated end use values as close as possible to the observed end use values. The SDG model uses a one-
minute time step, which is then aggregated into time series’ of 6-minute, hourly and daily time steps.  

This paper assumed that rainwater was used for toilet and clothes washer usage only. This study used 
observed data of Brisbane LGA during a two-week period in winter 2010 (June 2010) (Beal et al. 2010). The 
observed data sampled 61 homes in Brisbane LGA. The household size of the sample varied from 1 to 6. We 
used only 1 and 2 household sizes for the preliminary analysis reported in this paper. The mean and standard 
deviations used for the calibration are shown in Table 4. The resulting calibration parameters are shown in 
Table 5. This study reports preliminary results that were based on Brisbane data only. Analysis will be 
conducted by using the inputs data shown in Table 3 and for the other LGAs (i.e. Ipswich, Gold Coast and 
Sunshine Coast) and all occupancy rates in the future studies in order to represent household water demand 
of the whole SEQ. 
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Table 3 Input data of the Stochastic Demand Generator Model  

3.  

Input data  

End use Frequency Volume in litres per event Other  
Toilet No of half flushes/day Half flush volume for each flush  

No of full flushes/day full flush volume for each flush   
Taps and hand basins No of uses per day volume per use  
Showers No of showers/day duration per event and shower 

flow rate in litres/min 
 

Bath No of baths/day Bath volume and filling rate  
Dishwashers No of washes/day volume per wash Presence of a dishwasher  
Clothes washers No of washes/day volume per wash Presence of a clothes washer and the type (i.e. 

Type: Top Loader or Front Loader) 
Garden watering No of events flow rate in litres/min and 

duration per event 
 

A function that specifies the occurrence of 
garden watering in any time step of a given 
day as a function of climatic variables such as 
maximum temperature, evaporation and/or 
rainfall 

 

Table 4 Summary of observed Brisbane end-use data for 1 and 2 person-households (phh) (source: 
Beal et al, 2010) 

Toilet 
(l/p/d) 

Clothes Washer 
(l/p/d) 

Shower 
(l/p/d) 

Dishwasher 
(l/p/d) 

Tap 
(l/p/d) 

Bathtub 
(l/p/d) 

1 phh Observed Mean 31.9467 33.7534 43.0669 1.3917 33.2205 0 

1 phh Observed SD 9.9753 15.1597 17.9108 2.5792 13.1305 0 

2 phh Observed Mean 25.7855 38.1719 40.9337 1.7105 24.6791 0.8618 

2 phh Observed SD 13.1329 20.4059 19.8465 2.4584 10.4843 2.5229 

Normality of the observed data of 1 and 2 person households was tested using chi-square goodness of fit test, 
which indicated log-normal distribution to toilets and normal distribution to all other end uses. Accordingly, 
the SDG was modified in the following ways: Shower was changed from log-normal to normal distribution, 
toilet was changed from normal to log-
normal distribution, taps were changed 
from a fixed value to a normal 
distribution, and clothes washer was 
changed from fixed distribution to 
normal distribution. Dishwasher uses a 
fixed value for volume, and bath uses a 
fixed volume and fixed flow rate - these 
did not need to be modified. The SDG 
model was calibrated to 1 and 2 person 
household sizes (or occupancy rates) and toilet and clothes washer uses. Results (i.e. observed and modelled 
water demands of toilet and clothes washer end uses for 1 and 2 person households) are shown in Table 5.  

The calibrated SDG model was then used to generate representative end use demand time series in order to 
simulate the performance of 5000 household rainwater tanks. One hundred demand time series were 
generated. Of the hundred time series, 39 represented one-person households and 61 represented two-person 
households, which maintained 22:34 ratio as per (ABS 2006).  

Mean case demand input parameters 
The demand time series were averaged on a time step basis. The values for each time step across all 100 
demand files averaged using the arithmetic mean to generate the time series for the mean case. This demand 
time series represents the arithmetic mean of all demand.  

4. RESULTS AND DISCUSSION 

Differences between the mean case (i.e. with spatial lumping) and variable case (i.e. without spatial lumping) 
for the different performance measures considered in this study are shown in Table 6. It shows that spatial 
lumping of rainwater tanks overestimates potable water savings by about 15% compared to a case without 
spatial lumping. This result is comparable with 18% overestimation reported for Canberra-based data 

Table 5 Brisbane observed and modelled average demand  

Household occupancy: One Two 

Average observed toilet demand (l/p/d) 31.95 25.78 

Average modelled (using SDG) toilet demand (l/p/d) 30.34 25.36 

Average observed clothes washer demand (l/p/d) 33.75 38.17 

Average modelled clothes washer demand (l/p/d) 33.46 38.50 
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(Maheepala et al. 2011) and 14% overestimation reported for Melbourne-based data (Xu et al. 2010 and 
Mitchell et al. 2008). However, it should be noted that the results based on Brisbane-based data assumed 
rainwater for toilet and clothes washer uses only. If rainwater is used for garden water use, the variable case 
will incorporate more spatial variability than the spatial variability present in the results, which may likely to 
result in more overestimation than 15%.   

Table 6 Comparison of performance of a cluster of household rainwater tanks with and without the 
spatial lumping effect  

Mean case (with 
spatial lumping effect) 

Variable case (without spatial 
lumping effect) 

Difference between mean and 
variable cases as a percent of 
mean case 

Volumetric reliability 0.82 0.70 -14.7% 

Tank yield (kL/year) 30.86 26.30 -14.8% 

Overflow volume (kL/year) 64.26 68.28 6.3% 

TSS/TN/TP Inflow load (kg/year) 2.23 2.36 6.0% 

TSS Overflow load (kg/year) 1.09 1.29 17.8% 

TN Overflow load (kg/year) 1.20 1.39 15.5% 

TP Overflow load (kg/year) 0.77 0.98 27.6% 

The calculated results from running the mean and variable case for each of the three pollutants: total 
suspended solids (TSS), total nitrogen (TN) and total phosphorous (TP), are shown in Table 6.  The results 
indicate an underestimation of the overflow volume and inflow load as well as the outflow loads, which 
varies between 15% and 27%, depending on the nutrient: 17.8% for TSS, 15.5% for TN. Table 7 contains the 
results from simulating the comparatively more ‘tropical’ Brisbane variable case and also a comparable case, 
using ‘temperate’ Melbourne demand, rainfall and evaporative data. 

Table 7 Comparison of performance of a cluster of household rainwater tanks without the spatial 
lumping effect for Brisbane and Melbourne data 

Brisbane variable case Melbourne variable case 

Volumetric reliability 0.70 0.63 

Demand requested (kL/year) 37.36 52.31 

Tank yield (kL/year) 26.30 32.79 

Overflow volume (kL/year) 68.28 18.89 

TSS Inflow load (kg/year) 2.36 1.29 

TSS Overflow load (kg/year) 1.29 0.33 

TSS change (kg/year) -3.65 -1.62 

TSS reduction (%) -45% -0.74 

The geographical comparison showed that the results are similar, apart from overflow load. Due to the higher 
rainfall and lower demand in Brisbane has an overflow volume and load almost three times higher than 
Melbourne. This demonstrates sensitivity of results to local climatic and water use data, and illustrates the 
importance of calibrating the Stochastic Demand Generator and RWT models with local climate and usage 
characteristics from the catchment area of interest.  

5. CONCLUSIONS AND RECOMMENDATIONS 

In this study we have investigated the effect of spatial lumping of household rainwater tank supply on potable 
water savings, overflow volumes and nutrient and sediment loads, and also briefly compared the results of 
similar scenarios in different geographical areas: tropical Brisbane and temperate Melbourne. Results of this 
study indicates that ignoring of the spatial variability of water use from rainwater tanks and rainwater tank 
characteristics can cause overestimation of potable water savings and underestimation of overflow volumes 
as well as the nutrient and sediment loads associated with the overflow volumes, obtained from a cluster of 
rainwater tanks.  

Results reported in this study should be considered as “indicative” because of the assumptions made with 
regard to rainwater tank parameters values, limited use of rainwater for toilet and clothes washer uses and the 
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limited availability of observed end use data relevant to South East Queensland. Nevertheless, the 
preliminary results are of similar magnitude to the results reported previous research studies such as Mitchell 
et al (2008), Maheepala et al. (2011), Mashford et al. (2011) and Neumann et al (2011). Comparison of 
Melbourne based results with those of Brisbane has indicated that the effect of spatial lumping can vary with 
the local climate.  

The key outcome of the study thus far is that it is not recommended to use an average tank to predict the 
performance of a cluster of household rainwater tanks to find their contribution to potable water savings, 
overflow volumes and subsequent nutrient and sediment export to stormwater. Instead, we recommend using 
stochastic simulation of rainwater tanks, which will include the use of probability distributions to represent 
tank characteristics and stochastic representation of end use water demands, calibrated using local climate 
and observed demand and rainwater tank data. 

5.1. Further Work 

Analysis will be conducted for all council areas in SEQ in future studies to examine the impact of rainwater 
tanks on SEQ’s supply/demand balance. Observed Brisbane garden watering end-use data shows a close 
correlation with daily maximum temperature. We will be examining the validity of this relationship in our 
future work, with a view to stochastically generating suitable garden end-use demand time series’. 
Acquisition of observed demand data for households of all occupancies for all SEQ council areas will enable 
us to calibrate the demand model for all occupancies.  
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