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Abstract: Grahamstown Lake is an off-river storage supplying water to the city of Newcastle, Australia, with 
average depth, 7m and surface area 28km2.  Its catchment area is 100km2, generating half its water and the 
remainder is pumped from the Williams River.  Conventional water treatment processes as used by Hunter 
Water Corporation, including powdered activated carbon dosing, will not completely remove saxitoxins, 
which may be released from blooms of the cyanobacteria genus Anabaena in the lake. Management actions 
and considerations include water quality rules for pumping from the Williams River, catchment management 
and sediment treatment. 

Since the lake has experienced an increase in Anabaena blooms over the last 20 years, a number of 
investigations have been undertaken. Previous modelling of water quality in Grahamstown Lake has used 
traditional process-based methods. Because there is very little data relative to the complexity of the system, 
these models could not be rigorously calibrated to generate accurate predictions and have been ineffective for 
decision-making purposes.  

This paper describes the development of a data-driven, decision-focused Bayesian network model of 
Grahamstown Lake.  This model meets the criteria of being decision-focussed,  data driven, transparent, and 
capable of being used by non-expert modellers.  

 In the first stage of the development, all available data were arranged in a consistently formatted database 
from which the model could ‘learn’ probabilistic relationships between model elements such as pumped 
nutrient load, lake water column nutrient concentrations, Anabaena concentrations etc. This stage produced 
useful insights into ecosystem relationships and provided a basic model for later stages.  The first stage 
model was static and took no account of the system dynamics.  The stage 2 model uses the data sequentially 
and predicts Anabaena concentrations for some weeks ahead, following management interventions. The 
probabilistic nature of the models informs rational consideration of the uncertainty of predictions in this 
complex system. 

The paper describes the Stage 1 model structure and modelling outcomes, Stage 2 dynamic modelling and 
elicitation of conditional probabilities to strengthen components of the model for which there is little data 
available at this time.  
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1. BACKGROUND 

Hunter Water Corporation (Hunter Water) has managed Grahamstown Lake since the completion of the dam 
in 1964. The lake is an off-river storage supplying water to the city of Newcastle, Australia. It has an average 
depth of 7m and a surface area of 28km2.  Its catchment area is 100km2, generating half the water it stores 
and the remainder is pumped from the Seaham Weir in the nearby Williams River.   

Since the lake has experienced an increase in cyanobacteria blooms over the last 20 years, a number of 
investigations have been undertaken. Conventional water treatment processes as used by Hunter Water 
Corporation, including powdered activated carbon dosing, while effective for all other blue-green algal toxins 
will not completely remove saxitoxins, which may be released from Anabaena blooms in the lake.  

Quantities of water pumped to the dam and extracted from it have been the subject of an on-going modelling 
effort which determines best pumping strategies for minimizing risk of water shortage.  The Bayesian 
network (BN) modelling described in this report is aimed at determining best strategies for minimizing risk 
in relation to the quality of the water stored in Grahamstown Lake.   

Previous modelling of water quality in Grahamstown Lake used traditional process-based methods 
(Williams, 2006). Because there is very little data relative to the complexity of the system, process-based 
models could not be calibrated to generate accurate predictions. Confidence limits on predictions were never 
determined so they could not effectively be used in decision-making processes.  

Several BN models of Grahamstown Lake water quality are described in this paper. The simplest is an 
evidence-based ‘minimal’ model. The causal network specified in this model is its only subjective element. 
Its conditional probabilities are entirely ‘learned’ from Hunter Water’s routine monitoring data.  Elicitation 
of conditional probability estimates from industry experts was undertaken to bolster weak areas of data. 
Simple dynamic models have also been investigated. 

1.1. Water quality issues 

The Anabaena genus is of particular concern because of its potential for release of geosmin and the toxins, 
saxitoxin and possibly microcystin. While microcystin (also produced by the genus Microcystis) can be 
treated comparatively easy with particulated activated carbon (PAC) and chlorine, saxitoxin requires lengthy 
exposure to PAC(Ho et al., 2009), to an extent which is currently not practicable in Hunter Water’s treatment 
facility.   For this reason it has been thought advisable to specifically model this genus with a node in the 
Bayesian network where Anabaena is causally linked to the general algal concentration, stratification, water 
temperature and turbidity. Anabaena has an advantage in stratified conditions (Patterson,  Hamilton and  
Ferris, 1994; Reynolds, 1976), because it has the capacity to adjust its buoyancy. Incoming data from Hunter 
Water’s recently deployed thermistor chains will enable improved estimation of the strength of the 
probabilistic linkage between stratification and Anabaena blooms. 

Nuisance tastes and odours can arise from the presence of two organic compounds, geosmin and 2-methyl-
isoborneol (MIB) (Izaguirre and Taylor, 2007), which are released inter alia by a number of phytoplankton 
species, principally members of the cyanobacteria family. In recent years, Geosmin and MIB have been 
included in routine monitoring by Hunter Water.   

1.2. Strategic management actions 

• Pump rules: The decision to pump water of a particular quality from Seaham Weir into 
Grahamstown Lake, must impact at some level on the quality of water in the lake. Rules have been 
implemented to reduce pumping of water with high nutrient concentrations or algal cell counts.   

• Catchment management: Reduction of nutrient inputs from the catchment impacts on potential algal 
growth in the lake.  The model predicts probable impact of such reductions on water quality. 

• Sediment treatment: There is no data describing the release or sequestration of nutrients at the 
sediment interface available at present, so the impact of sediment treatment is not included in the 
Stage 1 model.  Laboratory work being undertaken will provide data which can be incorporated into 
the Stage 2 model to determine the impacts of various kinds of sediment treatment.  

• Data monitoring: The model highlights the most critical data in the network and hence guides 
decisions for additional data gathering and it suggests trade-offs with less important data. 
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1.3. Operational management interventions 

• Algal event alerts: Within the restrictions of limited data support, the model simulates the system’s 
dynamics and allows probabilistic predictions of the concentration and duration of reportable events.  
This development will improve Hunter Water’s capacity to inform regulators and stakeholders about 
critical events.  

• PAC dosing: The model predicts probabilities of saxitoxin, MIB and geosmin concentrations of 
bloom events, providing better guidance for resource needs for the associated specialized treatment 
requirements.  

1.4. Rationale for choice of model 

The following criteria were specified for choice of the model. 

1. The model should inform decision-making as directly as possible. 

2. The model should use monitoring data as fully as possible. 

3. Model predictions should acknowledge and describe uncertainty. 

4. The model should be credible, accessible to, and ‘owned’ by Hunter Water’s water quality scientists 
and engineers (Aber, 1997). 

5.  The model should be transparent to all stakeholders. 

Bayesian network models meet these criteria. Process-based models have a loose connection to decision-
making, only use monitored data selectively, do not acknowledge uncertainty, are generally too complex for 
non-expert modelers and are not inherently transparent. 

1.5. Bayesian network applications in water environments in Australia 

To the authors’ knowledge, this is the first application of structured data-mining using a water authority’s 
routine sampled data to assess probabilities for decision-making purposes. Bayesian networks are 
increasingly being used as a decision-making tool in a range of environmental/water management 
applications in Australia.  

For example, a BN based decision support tool called CLAM (Ticehurst,  Letcher and  Rissik, 2008; 
Ticehurst et al., 2005) has been developed and used in nearly 30 coastal lakes and estuaries on the NSW 
coast. The Netica Software (Norsys Software Corp., 2009) used in the Grahamstown project has been widely 
used in studies of wetlands, environmental flows, marine algal blooms etc. (Chee,  Burgman and  Carey, 
2005; Johnson,  Fielding,  Hamilton and  Mengersen, 2010; Stewart-Koster et al., 2010 ). Pollino and 
Henderson (2010) have recently written an Australian government guide on the use of BN modelling in 
natural resource management. 

1.6. Data quality 

 A complex ecosystem, such as that supported in Grahamstown Lake, requires far more data than are 
available to make predictions as accurately as we might desire.  This is universally true of ecosystem models 
of natural systems. Process based models are rarely rigorously calibrated (Arhonditsis and Brett, 2004; 
Williams, 2006), because data are inadequate.  

Hunter Water’s data set, while good by most standards, remains limited in terms of its predictive capability 
because of the system’s complexity. Samples for analysis are collected at three locations in the lake: the north 
end, near the inlet from the Balickera Canal, centre and south end, near the off-take outlet. The stations are 
roughly 3 kilometres apart. Sampling has mostly been undertaken weekly since 1985, though not all 
parameters were sampled from that time nor are all parameters always sampled at weekly frequency. As we 
might expect in the 26 year period only a limited number of ‘extreme’ events have occurred, so for them 
there is weak data support. The minimal BN model ‘learns’ conditional probabilities of blooms entirely from 
this set of monitored data, with the exception of the catchment loads which result from a simple catchment 
model of the nutrient (nitrogen and phosphorus) loads. A program was written to generate a set of consistent 
‘cases’ which could be used for this purpose from the Hunter Water data set. 

An implicit assumption in using the weekly samples in this way is that samples are independent.  In fact there 
will be correlation of water quality within events.  The probability of events of some prescribed concentration 
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will be less than the probability of the samples taken at that concentration because events will in general 
contain more than one sample exceeding the prescribed concentration.  

1.7. Bayesian network models 

The Bayesian paradigm is founded on the notion that probabilities of events may be modified by knowledge 
of some additional information. Such modified probabilities are called conditional probabilities because they 
are ‘conditioned’ on this additional information.  

A Bayesian network is a directed causal network (Pearl, 2000) in which probabilities are assigned for all 
internal (‘child’) nodes, conditional on the states of their ‘parent’ nodes (linked by arrows into the child 
node). An important assumption in the construction of Bayesian networks is that there are no cycles within 
the network. Formally, such networks are called directed acyclic graphs (DAG’s). For computational 
reasons, the probability distributions for the nodes must be described by a finite set of mutually exclusive 
‘states’, such as ‘very low’, ‘low’, ‘moderate’, ‘high’, ‘very high’. In this model concentration ranges have 
been defined for each state. The data and computational requirements increase combinatorially with the 
number of states for each node and its parents.  For Anabaena, the Alert level concentrations required by the 
EPA (NSW) have been used. All child nodes have associated with them a conditional probability table 
(CPT) each entry of which provides the probability of the child node being in one of its discrete states, given 
that the parent nodes are in a particular combination of their possible states. The dimensions of the CPT are 
thus the product of the possible states of the parent nodes and the child node. 

The CPT’s in the Bayesian network in practice are determined (“learned”) from the data, by various methods, 
the simplest of which is to count the number of instances of each of the child states occurring for 
combinations of parent states. Netica offers two other methods of CPT determination, namely conjugate 
gradient descent and the expectation maximization (EM) algorithm. Both these methods are more time 
consuming. They work with an iterative process in which a candidate net is determined, its log likelihood 
estimated and then incremental changes are made using the case data to find a better net. These methods are 
described at length in Neapolitan (2004). 

2. GRAHAMSTOWN LAKE MODELS 

Figure 1 shows the ‘minimal’ Bayesian network for the Grahamstown Lake system. This network was 
selected by trial from amongst a group of proposed models, in consultation with Hunter Water’s water 
quality scientists and engineers. In particular it allows testing of pumping strategies and the impact of 
catchment management. 

 Seaham Phosphorus
extreme
high
moderate
low
minimal

3.06
19.3
38.6
38.6
0.48

Grahamstown  catchment Nitrogen
moderate
low
minimal

23.7
16.4
59.9

Water temperature
veryHigh
high
low

13.3
38.3
48.3

 Grahamstown  catchment Phosphorus
moderate
low
minimal

19.0
9.37
71.6

Saxitoxin
High
moderate
Low
None

 0 +
 0 +
 0 +

 100
0.000108 ± 0.1

G'town P
high
moderate
low

19.7
22.6
57.7

Turbidity
high
moderate
low

3.19
57.6
39.2

 G'town  N
high
moderate
low

10.7
60.6
28.6

G'town Chl a
extreme
high
moderate
low
minimal

.001
0.13
64.0
29.0
6.84

Pumped N load
high
moderate
low
None

0.27
0.91
21.6
77.2

Seaham Algae
extreme
high
moderate
low
minimal

0.25
6.17
77.0
11.2
5.35

Pumped P load
high
moderate
low
None

8.71
4.28
8.95
78.1

Seaham Nitrogen
extreme
high
moderate
low
minimal

0.56
19.3
64.2
15.3
0.65

Pump from Seaham
Maximum
high
moderate
low
minimal
Not pumping

.098
0.49
1.28
5.31
15.7
77.1

MIB
high
medium
low

1.51
2.98
95.5

Anabaena
Alert3
Alert2
Alert1
detection
below

 0 +
 0 +

1.71
2.70
95.6

Geosmin
High
medium
low

2.89
10.5
86.6

Pumped Algal load
high
moderate
low
None

22.2
0.33
0.34
77.1

 

Figure 1. Belief bars of minimal Bayesian network model of Grahamstown Lake system 

The nodes include water quality in the Seaham Weir (algae, nitrogen and phosphorus), the level of pumping, 
the associated pumped load of algae and nutrients, catchment loads of nitrogen and phosphorus and the 
resulting environmental conditions in the reservoir itself – nitrogen (G’town N), phosphorus (G’town P) and 
algae (G’town Chl a). MIB is assumed to be dependent on the chlorophyll ‘a’ concentration and Anabaena is 
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conditioned on the chlorophyll ‘a’, turbidity, water temperature and stratification. Saxitoxin is causally linked 
to the Anabaena concentration.  The linkages express causality, but information can also be inferred from 
‘downstream’ nodes. The boxes indicate the probabilities associated with each node. Notice that the Alert 3 
and Alert 2 conditions for Anabaena have associated probabilities of 0+ - the software’s indication of a very 
small number.  Hunter Water’s data set, in fact, has no examples of concentrations exceeding Alert 1.  

Fig 2 shows a slightly expanded version of the minimal model in which there is an additional node 
(Stratification) which is an additional ‘parent’ node, conditioning Anabaena. There are several other less 
obvious differences resulting from elicited information from three external experts. Elicitation of expert 
values (O'Hagan et al., 2006 ) is of primary importance for Bayesian networks with limited data. It offers a 
means of transparently incorporating additional information which can be critically peer-reviewed prior to 
the model’s use in decision-making.  

Notice in Fig 2 that there are now small probabilities associated with the Alert3 and Alert2 categories of 
Anabaena. These are derived from the Anabaena CPT which now contains stratification as a condition and 
for which, in extreme situations, values were elicited from the experts. Hunter Water has only about 18 
months of stratification data, so elicitation was necessary for these CPT’s. 
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Fig 2. Expanded model with elicited CPT values for Anabaena Alert 2 and 3 and MIB, geosmin and 
saxitoxin 

Secondly, notice that there are now values for high and moderate categories of saxitoxin.  This follows from 
the increased Anabaena probability, but has also been affected by elicited conditional probabilities. Similarly, 
there are modified values for geosmin and MIB. Elicitation of extreme components of the CPT for Anabaena 
and the CPT’s for Geosmin, MIB and Saxitoxin was undertaken using a questionnaire sent to three well 
known Australian blue-green algae authorities. Conditional probabilities estimated by these experts were 
arithmetically averaged and then added directly to the CPT’s in Netica.   

With these modifications to the CPT’s, estimates of impacts of critical conditions for Anabaena can now be 
made as shown in Figure 3. Notice that the nodes conditioning Anabaena have all been set to critical levels. 
The software then estimates the probabilities of an Anabaena bloom as shown. Recall that Hunter Water has 
never had an Alert 2 bloom. The explanation for the high probabilities (50% chance of Alert 2 or higher) is 
that the conditions specified are very rare. The extreme chlorophyll ‘a’ event estimated using the EM 
algorithm has a likelihood of around 1 in 2000 years.  

The model in this form has been used to consider the impact of high pumping events when there is poor 
quality water in Seaham Weir, catchment management to reduce catchment nutrient loads and seasonal risks. 

Attempts to construct conventional time series models have been unsuccessful because of the ephemeral 
nature of blooms. Modelling was also attempted with a variety of Dynamic Bayesian Networks (DBN). A 
lag-one model is shown in Figure 4, cropped to show the detail of the Anabaena and geosmin trajectories. An 
Alert 3 category is set and the following sequence of nodes (Anabaena1, Anabaena2 etc) shows its decay 
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week by week. The uniform probabilities in Anabaena3 (occurring 3 weeks after the bloom initiates) are 
thought to arise from the sparsity of real data in the CPT and the approximate nature of the EM algorithm. No 
attempt has been made at this time to interpolate or smooth the expert estimates inserted in the CPT’s. 
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Figure 3. Prediction of Anabaena concentration probability distribution under critical conditions 

Interpolation (Das, 2004) in the CPT’s to reduce such ‘noisy’ behavior will be undertaken in future 
development of the model.  

Comprehensive scenario assessment has not yet been undertaken, but already improved predictive insights 
and confidence arising from the use of the Bayesian network models have allowed Hunter Water to cancel 
development of mooted treatment facilities with capital costs of around $12 million and annual operational 
costs of around $1 million. Preliminary runs of pumping strategies, suggests that there are only small risks 
associated with relaxation of pumping strategies. 

Perhaps the most outstanding shortcoming of Bayesian network models is that while they estimate 
probabilities of states, learnt from data, current technology does not allow estimates of the uncertainty of the 
estimates.  
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Figure 4. Example of weekly interval, dynamic network (cropped to show dynamic nodes) 
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3. CONCLUSIONS 

Bayesian network models are an effective way of using routine monitoring data to improve decision-making  
in complex water quality management systems in the water supply industry.  Elicited data provides a 
transparent, defensible means of extending data. The nature of these models is probabilistic and they account 
for the uncertainty in these data-poor complex systems. The relative simplicity of Bayesian network models 
allows both ecologists and managers to assess and test the causal structure of the model, investigate scenarios 
and interpret outcomes in relation to decision-making.   
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