19th International Congress on Modelling and Simulation, Perth, Australia, 12—16 December 2011
http://mssanz.org.au/modsim2011

Interaction between habitat quality and an Allee-like
effect in metapopulations

R. McVinish  and P.K. Pollett

aSchool of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, Queensland, 4072
Email: pkp @maths.uq.edu.au

Abstract:

Many species exist as a collection of local populations occupying spatially distinct habitat patches. Such
a collection of local populations is called a metapopulation. Metapopulations are constantly changing
due to the processes of extinction and colonisation occurring at each habitat patch. The primary focus in
the study of metapopulations is to determine if the metapopulation will persist and, if so, at what level.

Mathematical models of metapopulations provide ecologists with tools for better understanding the dy-
namics of the metapopulation. A useful class of metapopulation models is the stochastic patch occu-
pancy models (SPOMs). The characterising feature of a SPOM is that only the presence/absence of a
population at each habitat patch is modelled. Classical metapopulation models such as Levins’s model
and the stochastic logistic model assume homogeneity of habitat quality throughout the metapopulation.
However, it is known that species distribution patterns are effected by the quality of habitat available
[see Mortelliti et al., 2010, for an overview of the role of habitat quality]. Furthermore, it is necessary
to incorporate habitat quality into the modelling in order to study the effect of habitat degradation and
destruction on the persistence of the metapopulation. A review of some models that attempt to better re-
flect the ecological reality including incorporating variation in habitat quality is provided by Hanski and
Ovaskainen [2003]. See also Gyllenberg and Hanski [1997] who study a differential equation metapop-
ulation model that incorporates variation in habitat quality and use this model to examine the effect of
habitat degradation and destruction.

In addition to habitat degradation, the persistence of a metapopulation is affected by its dynamical prop-
erties. One such property is called an Allee-like effect. This term is borrowed from population biology
where the Allee effect refers to populations exhibiting a critical threshold below which the population
goes extinct [see Courchamp et al., 2008, for detailed discussion of the Allee effect in ecology]. For
metapopulations, an Allee-like effect refers to a metapopulation exhibiting a similar threshold behaviour.
Amarasekare [1998] summarises some of the evidence supporting the operation of an Allee-like effect in
real metapopulations and proposes a modification of the Levins’s model which exhibits this phenomenon
[see also Courchamp et al., 2008, pages 103-105]. Note that Amarasekare’s model does not allow varia-
tion in habitat characteristics.

In this paper, we examine the effect of habitat degradation on a metapopulation exhibiting an Allee-like
effect using the metapopulation model introduced in McVinish and Pollett [2010]. This model incor-
porates variation in habitat quality between patches by allowing the local survival probabilities to vary
between patches (but not in time). The model can also incorporate an Allee-like effect by imposing
certain conditions on the colonisation process. The resulting discrete time Markov chain is difficult to
analyse directly, but can be approximated by a deterministic process when the number of habitat patches
is large. This approximation is used to study the effect habitat degradation has on the persistence the
metapopulation. We show that even a small amount of habitat degradation in metapopulations exhibiting
an Allee-like effect can cause a metapopulation with a high level of persistence to go extinct. This can be
contrasted with a metapopulation that does not exhibit an Allee-like effect where a small change to the
habitat quality will result in only a small change to the level of persistence of the metapopulation. We
conclude that metapopulations exhibiting an Allee-like effect are in much greater need of protection from
habitat degradation and destruction.
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1 A METAPOPULATION MODEL

In this section, we summarise the model studied in McVinish and Pollett [2010]. This model is an example
of a stochastic patch occupancy model (SPOM) as only the presence or absence of the species of interest
is noted for each habitat patch and not the size or structure of the population at the habitat patch. Consider
a metapopulation comprised of n habitat patches and let X t(n) indicate the state of this metapopulation at
time ¢ where

1, if habitat patch i is occupied at time ¢,
0, otherwise.

XM =(xm,...,x{") with X1f72>:{ (1

»“in,t

Between observations, the metapopulation undergoes a series of colonisation and extinction events. In this
model, these events are separated into distinct phases as is done in Hill and Caswell [2001] and Buckley
and Pollett [2010]. First, a colonisation phase occurs during which unoccupied patches are colonised
by individuals from the occupied patches. The colonisation events are assumed to be independent of one
another and the probability of an unoccupied patch being successfully colonised during this phase is given
by a function, f, of the proportion of occupied patches in the metapopulation. The function f is called
the colonisation function and satisfies the following assumption;

(A) The colonisation function f : [0, 1] — [0, 1] is an increasing, concave function such that f(0) = 0
and f'(0) > 0.

The assumption that f(0) = 0 means that once all habitat patches are unoccupied, they can not be
recolonised from some outside source and the metapopulation is extinct. Concave colonisation functions
such as f(z) = 1 — exp(—fz), f > 0 [Hill and Caswell, 2001] are commonly used, but non-concave
functions are also relevant. The case of non-concave colonisation functions will be studied in the next
section. Although this type of colonisation process ignores the connectivity and distances between habitat
patches, it facilitates the analysis of the model. During the extinction phase, the local population at habitat
patch ¢ goes extinct with probability 1 — s; independently of the other patches. We call s; the survival
probability at patch ¢. Differences in survival probabilities between patches can arise simply due to
differences in patch area [an assumption used, for example, in Moilanen, 2004], though other factors may
have greater importance for population survival such as the abundance of food and shelter and the absence
of predators.

Mathematically, the metapopulation model {Xt(n)}f:0 is a discrete time Markov chain. To describe the

transitions, let B(m, p) denote the binomial distribution with parameters m € {0,1} and p € [0, 1]. The

)

transitions of Xt(" are given by

X ~ BT )+ B(1-XPsif (n70 )0 X(7)). @
The first term on the right hand side of (2) models a population occupying a habitat patch surviving
the extinction phase, while the second term models an unoccupied patch being colonised and then the
occupying population surviving the extinction phase. The complexity of the model prevents an exact
treatment of the model. Instead we consider a deterministic approximation which is valid when the
number of habitat patches is large. There is a large literature describing this type of approximation for
continuous time Markov chains [see Darling and Norris, 2008, and references therein]. To construct the
deterministic approximation of the metapopulation model, we impose the following assumption on the
survival probabilities and initial state of the metapopulation.

(B) There exists a probability measure ¢ and deterministic sequence {d(0, k)} 22, such that

n 1 n

nty sl sy = / Mea(d)), and n~! Zsfxfjg> 2 d(0, k) 3)
i=1 0 i=1

forallk =0,1,...
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We call ¢ the survival distribution. Assumption (B) will hold if, for example, the s; are independent and

identically distributed random variables with distribution ¢ and if, given the s;, the X z’(,%) are independent

Bernoulli random variables with P(X i(’%) = 1|s;) = p(s;) for some function p.

Theorem 1 (Theorem 2.1 of McVinish and Pollett [2010]) Suppose that (B) holds. Then for all k =
0,1,...andallt =0,1,2,...

n”! Zs’“x(” d(t, k), “
where
dt+1,k) =d(t,k+ 1) + f (d(t,0)) (Sg41 — d(t,k +1)). 5)

We are primarily interested in the sequence {d(¢,0)}7_, which gives the limiting proportion of occupied
patches in the metapopulation. However, the other values of d(t, k) do provide some useful informa-
tion. For example, given ¢, the sequence {d(t, k)/d(t,0)}?2, can be interpreted as the moments of the
distribution of the survival probabilities of occupied patches.

To better understand the infinite system of difference equations (5), we examine its equilibrium points
and their stability. A sequence {d(k)}%2, is an equilibrium point of (5) if it satisfies

d(k) = d(k +1) + f(d(0)) (g1 — d(k + 1)) (©)

It is said to be stable if for all initial conditions {d(0, k)}%°, in a sufficiently small neighbourhood of

{d(k)}i,
lim d(t; k) = d(k), @)

for all K > 0. (Since, for each ¢, {d(¢, k)}72, is completely monotone, there exists a unique measure
¢+ whose moments are given by {d(t, k)}$2, [see Theorem 4a in chapter III of Widder, 1941]. This is
true also of the equilibrium points. A neighbourhood of the equilibrium point is interpreted as a weak
neighbourhood of its associated measure. The limit (7) implies the weak convergence of i to the measure
associated with the equilibrium point.) Otherwise, the equilibrium point is called unstable. If the limit (7)
holds for all initial conditions, then the equilibrium is said to be globally stable. The stable equilibrium
point(s) of the system will provide an approximation of the long run proportion of occupied patches in
the metapopulation. The following theorem gives the equilibrium points of (5) and their stability.

Theorem 2 Suppose that (A) holds. The equilibrium points of the recursion (5) are given by

) = [ 1O o, ®
where 1 solves
:
v=R ()= [ s ©
The extinction state, d(k) = 0, is the unique equilibrium point of (5) and is globally stable if and only if
DY
) | oo < 1. (10)

If inequality (10) does not hold, then the recursion (5) has two equilibrium points of which one is d(k) =
0. The non-zero fixed point is stable, whilst d(k) = 0 is unstable.
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Theorem 2 is mainly a restatement of Theorems 2.2 and 2.3 in McVinish and Pollett [2010]. Although
it was not stated in McVinish and Pollett [2010] that d(k) = 0 is globally stable if inequality (10) holds,
this is evident from the proof. That d(k) = 0 is unstable if inequality (10) does not hold is new and the
proof is given in the appendix.

2 INCORPORATING AN ALLEE-LIKE EFFECT

An Allee-like effect for metapopulations can be defined as the metapopulation going extinct if the propor-
tion of occupied patches is small, but otherwise the metapopulation has a positive long run proportion of
occupied patches. In mathematical terms, this means that zero (the extinction state) is a stable equilibrium
point of the system and that at least one non-zero, stable equilibrium point exists. In our model, from
Theorem 2, as in the classical Levins’s model and the limiting model of Buckley and Pollett [2010], if a
non-zero stable equilibrium is present then zero is unstable. This implies the absence of Allee-like effects
in the metapopulation.

Amarasekare [1998] proposed a modified version of Levins’s model to study Allee-like effects in
metapopulations. The model attempts to reproduce the phenomenon but model parameters do not keep
the same interpretation. Hui and Li [2003] extended this model to incorporate both a ‘rescue effect’
and an ‘overcrowding effect’ while Zhou et al. [2004] considered a two species version of the model.
Although each of these three papers consider the effect of habitat destruction, the assumption of homo-
geneous patch characteristics limited their analyses to considering either complete destruction of certain
patches or a common reduction in the survival rates for all patches. Incorporating the Allee-like effect
will permit a more detailed analysis of the interaction between habitat degradation and destruction and
the Allee-like effect. To incorporate an Allee-like effect, we modify Assumption (A).

(A”") The colonisation function f : [0,1] — [0, 1] is a non-concave, increasing function satisfying in-
equality (10) such that f(0) = 0 and f”(0) < 0.

Under assumption (A’), the fixed points of (5) are still given by equations (8) and (9). However, the
number of solutions to (9) can not be easily determined. The assumption that inequality (10) is satis-
fied ensures that the extinction state is a stable equilibrium point of the system. The stability of other
equilibrium points is determined by the following theorem.

Theorem 3 Let 1* be a solution to (9). If R, (¢¥*) < 1 then the corresponding equilibrium point given
by equation (8) is stable. If R, (1*) > 1 then the corresponding equilibrium point is unstable.

The proof of Theorem 3 for R/ (1) < 1 follows the same arguments as in the proof of case (i) of Theorem
2.3 in McVinish and Pollett [2010]. Due to space constraints, the proof for R/ (1)) > 1 is omitted but
will appear elsewhere. In the modification of Levins’s model, Amarasekare [1998] was able to explicitly
determine a threshold for the initial metapopulation that determined to which of the two stable equilibrium
points the metapopulation would approach. Due to the complexity of the model, we are unable to identify
an explicit threshold. Instead, we derive a sufficient condition for the metapopulation to go extinct.

Theorem 4 Let x* be the smallest x > 0 satisfying

Lo
d\) = z. 11
fl@) [ {o5elan =a an
If Y02 d(0s k) < * then limy .o d(t;0) — O.

The proof of Theorem 4 is given in the appendix. It is important to note that the condition in Theorem
4 concerns not only the proportion of occupied patches in the metapopulation but also the quality of
those occupied patches. If the survival probabilities are bounded by s* then we can apply Theorem 4 to
conclude that the metapopulation will go extinct if the initial proportion of occupied patches is less than
*(1 — s*).
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3 HABITAT DESTRUCTION AND DEGRADATION

Metapopulation models have often been used to study the effect of the habitat destruction on the behaviour
of the metapopulation and, in particular, its effect on the equilibrium level. Most of these models were
only able to reveal the effect of complete destruction of a certain proportion of the habitat patches [see,
for example, Amarasekare, 1998; Hill and Caswell, 2001; Zhou et al., 2004]. One notable exception
is the model studied by Gyllenberg and Hanski [1997] which incorporated patch quality and studied
the interaction between habitat degradation and the rescue effect. In this paper, we consider a varying
degree of habitat degradation at each habitat patch. Habitat degradation at patch ¢ is modelled by a
decrease in the survival probability s; — s, < s;. Complete destruction of patch ¢ is indicated by
s; — 0. The quality of the habitats in two metapopulations can be compared using the theory of stochastic
ordering [Miiller and Stoyan, 2002]. Let o7 and o2 be two distributions on [0,1). We write 01 < o9 if
for all z € [0,1), o1((x,1)) < o2((z,1)). We write 07 < o9 if 01 < 09 and if for some x €
[0,1), o1((x,1)) < o2((x,1)). The following two properties are important for our application: (i) If
o1 < 09, then for any increasing function u, [u(X)oi(dA) < [u(N)o2(dN). (i) If o1 < o2 and
[u(XN)o1(dN) = [u(A)o2(dX) for some strictly increasing function, then o1 = 0.

First note that the integrand in equation (9) is increasing under both assumption (A) and (A’). Therefore, if
o1 < og then for all ¢ € [0,1], Ry, () < Ry, (1). Furthermore, we note that if o,,, converges weakly to
o then for all ¥, R, (1) — R, (1). In the absence of an Allee-like effect, that is under assumption (A),
these properties imply that the non-zero equilibrium point 1)* is a continuous, non-increasing function of
o. In other words, in the absence of an Allee-like effect, degrading the habitat will result in a gradual
decrease of the equilibrium level. This point is illustrated in Figure 1 (Left).

The effect of habitat degradation can be more dramatic in the presence of an Allee-like effect. Suppose
that o* satisfies Ry+ (1) < 1 for all » € [0,1] and for some ¥* > 0, R,+(¢*) = ¢*. The only
equilibrium point of a metapopulation with survival distribution o < ¢* is the extinction state 1)* = 0.
On the other hand, a metapopulation with survival distribution ¢ such that ¢* < ¢ has at least one
non-zero stable equilibrium point. This point is illustrated in Figure 1 (Right).

Finally, we note that equilibrium points with R/ (¢*) > 1 may increase under habitat degradation. How-
ever, Theorem 3 states that such equilibrium points are unstable and hence do not provide an approxima-
tion to the long run proportion of occupied patches in the metapopulation.

4 DISCUSSION

Previous metapopulation models incorporating an Allee-like effect have been based on Levins’s model
Amarasekare [1998]; Zhou et al. [2004]. Therefore, they are unable to incorporate variation in habitat
patch characteristics. We considered a variation of the metapopulation model of McVinish and Pollett
[2010] which incorporates both the Allee-like effect and variation in habitat patch characteristics. This
model was used to compare the effects of habitat degradation on metapopulations both with and without
an Allee-like effect. It was demonstrated that for metapopulations with an Allee-like effect even a small
amount of habitat degradation can have catastrophic consequences.

5 APPENDIX

Proof of Theorem 2 (d(k) = 0 is unstable if (10) does not hold): If d(k) = 0 were a stable fixed point
then, lim; ., d(t;0) = 0 for d(0; k) sufficiently small. Let ¢;(2) = > p, d(t; k)2 for all z € [0,1].
Now if d(t; 0) — 0 then ¢ (z) — 0 forall z € (0,1) since ¢;(2) < d(t;0)(1 — z)~*. We now show that,
for some z* € (0, 1), it is not possible for ¢;(z*) — 0. From recursion (5)

A
1—- Mz

1
ber1(2) = 27 éu(2) — 27 1d(t;0) + £(d(t;0)) (/0 o(d\) — 2z e (2) + z_ld(t;0)>

1
= o) +dw0) (£0) [ o) - ) - S0 (o) - d(e0)

A
1- Mz

1
T (f(d(t:0)) — £(0)d(t;0) / o(dN)
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Figure 1: The functions R, (1)) are plotted for survival distributions Beta(c,2) with various values of .
The intersection of the curve R, (1)) with the straight line gives the equilibrium levels of the metapop-
ulations. Note that if @; < a2 then Beta(ay,2) < Beta(as,2) in the stochastic ordering. Left: No
Allee-like effect. The colonisation function is f(z) = 0.7z and « = 8, 6,4, 2, 1. Right: Allee-like effect.
A non-concave colonisation function is used with f(1) = 0.7 and o = 8, 5.68, 4.

1
> 20 S 0) 6 +ds0) (710 [ atan -

1

@02 [ o,

where n € [0,d(t;0)]. Since inequality (10) does not hold, there exists a § > 0 such that for all z €
[1 - 6» 1]’

1
A
f/(O)/O T )\Za(d)\) —z71>0.

As f is concave, f”(x) < 0 forall z € [0,1]. Let C = —min f"(x). If ¢:(z) < 1 then for all
z€el-4,1],

1
bua(2) 257 (1= 1) — Oane) [ T 2aan) o

Therefore, there exists a p > 1, an e > 0 and z* € (1 — 6,1) such that if ¢;(z*) < € then ¢y11(2*) >
poi(2*). Hence, lim;_, oo ¢¢(2*) 4 0. This completes the proof.

Proof of Theorem 4: We first need to show that ¢;(1) < co. If inequality (10) holds then

o0 o0 ~ 1 A
¢t<1>=2d<t;k>s§sk:1+/o 2oy < oo.

k=0

Noting that d(¢; 0) < ¢(1), recursion (5) gives

. 1
oua() < oun+ao) (LD [ 2oy -1).

Set z* to be the smallest x > 0 satisfying equation (11). If ¢;(1) < z* then d(¢;0) < z* and ¢¢11(1) <
¢¢(1). This establishes that ¢;(1) is a decreasing sequence. Using the same arguments as in the proof
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of case (ii) of Theorem 2.3 in McVinish and Pollett [2010], we establish that lim;_.~, d(¢, k) = 0 for all
k > 1. We rewrite recursion (5) as

d(t+1;0) < 0; + %gld(t;m,

where J; is a positive, bounded sequence converging to zero. For all x < x*,

1
f;x)glgf;x)/o 1i/\0_(d>\)<1

from equation (11) and using the continuity of f. It now follows that lim;_., d(¢,0) = 0. This completes
the proof.
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