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Abstract: To evaluate decision’s sustainability, it is necessary to determine and assess the values of 
current and future welfare outcomes which, in turn, depend on the current and predicted status of the 
environment. These tasks make the application of models and mathematical tools unavoidable and justify 
the necessity of quantitative indicators of sustainability in decision and policy making, since environmental 
models are aimed to produce the results which complement observations on environmental parameters 
where they cannot be obtained directly. At the same time, concerns raised by the scientists and practitioners 
in recent years led to a suggestion that the complexity of the environmental models is one of the main 
obstacles in their wider use by the stakeholders. Therefore, complexity reduction is an important task for 
the successful application of the environmental models in the practical environmental decision-making and 
management. 

The term ‘complexity’ is used in conjunction with a computational algorithm in order to describe its 
efficiency during the runtime. The comparison of the complexity of any two models describing the same 
ecosystem must take into account the following model features: the total number of state variables included 
into the model, the total number of model parameters and the non-linear features of the model. It is worth 
noting that, in general, these three features are independent. While first two characteristics can be expressed 
through the complexity index, the third one cannot be easily quantified and added to the index. An obvious 
suggestion is that the implementation algorithms used to obtain the model solutions must also be 
considered in deciding on the comparative complexity of the models. In this case, the effect of non-linear 
terms could be taken into account, at least to some extent. Commonly used statistical approaches to 
building an emulator of a complex model include response surface method (RSM), neural network (NN) 
and kriging. In all three cases, the emulators are constructed using mathematical techniques which 
significantly differ from those used in the original models. This means that the emulators have sets of own 
parameters which do not overlap with the original model parameter sets in terms of their practical meaning 
or their values. 

Environmental models can be used in environmental management within the following settings: (1) to test 
possible scenarios via “what-if” analysis; (2) to find an optimal or at least satisficing scenario via 
optimization methods; (3) to determine key factors for a case study at hand. The replacement of an original 
model by an emulator looks very attractive with one reservation: it is necessary to ensure that the 
replacement is valid. It is obvious that in general case equal or very close values of two functions in certain 
points do not guarantee that their derivatives will also have close values. This means that emulators of 
complex environmental models can be used in the tasks which require only values of model state variables 
to complete the investigation. If the problem calls for optimization methods, it is necessary to ensure that 
the emulator contains all relevant state variables permitting to find a solution, and only non-gradient 
methods can be recommended to find a solutions to avoid misleading results. 
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1. INTRODUCTION 

Sustaining the environment via maintaining its functions in order to provide economic and social needs 
becomes vitally important. The World Commission on Environment and Development (Brundtland, 1987) 
determined the concept of sustainable development as a “development that meets the needs of present 
[generations] without compromising the ability of future generations to meet their own needs”. To evaluate 
decision’s sustainability, it is necessary to determine and assess the values of current and future welfare 
outcomes which, in turn, depend on the current and predicted status of the environment. These tasks make 
application of models and mathematical tools unavoidable and explain the necessity to use quantitative 
indicators of sustainability in decision and policy making, since environmental models are aimed to 
produce the results which complement observations on environmental parameters when they cannot be 
obtained directly. 

Environmental decision-making deals with ecological systems and the necessity to predict their behaviour. 
A lot has been said about the fact that ecosystems are complex, dynamic and spatially heterogenous objects, 
in which physical, chemical and biological processes are closely interrelated and interdependent (e.g., Antle 
et al., 2001; Levin, 1999). Sustainable management of natural resources and environmental systems 
requires an adequate consideration of various ecological and socio-economic services provided by 
ecosystems. An idea of sustainable environmental management is only possible if multiple goods and 
services generated by an ecosystem are properly identified, quantified, valuated, predicted and forwarded to 
decision-makers at the early stages of the process. This makes environmental models a key tool in the 
assessment. The diversity of stakeholders of environmental models including governmental authorities, 
researchers, IT specialists, NGOs, and private sector leads to a variety of expectations and perceptions 
regarding potential benefits and values of the information provided by environmental models (Mysiak et 
al., 2008). Concerns raised in the responses to a global questionnaire on the use of environmental models 
and decision support tools led to a suggestion that the complexity of the environmental models is one of the 
main obstacles in their wider use by the respondents (McIntosh and Diez, 2008). Therefore, complexity 
reduction is an important task for the successful application of the environmental models for the practical 
environmental decision-making and management.  

The role of complex models has received due attention in modern literature (e.g., Reichert & Omlin, 1997; 
Van Ness & Scheffer, 2005). Environmental models of lower complexity are preferable for researchers and 
decision makers, since they allow for comprehensive analysis of a problem at hand and extensive 
simulation experiments. An application of a model of reduced complexity (an emulator) which is suitable 
for a decision making process is called metamodelling. A survey of emulation techniques has been 
undertaken by Simpson et al. (2001) who considered four metamodelling approaches:  response surface 
method, neural networks, inductive learning, and kriging and provided some recommendations on using 
these approaches. 

The paper analyses the issue of complexity for process-based environmental models, its possible definitions 
and approaches to the development of environmental models of reduced complexity. The study shows that 
the way of model complexity reduction depends on the nature of its usage and the required model analysis 
and that application of emulators can be validated only for specific types of simulation experiments. 

2. MODEL COMPLEXITY 

One of the approaches to environmental modeling rests on process-based models. Environmental indicators 
relevant to an investigated case study are selected and their spatial or temporal dynamics is imitated by 
describing natural processes affecting the indicators based on mathematical formulae. The set of indicators 
determines the number of model state variables and processes which must be taken into account. The 
processes contributing significantly to indicators’ variability are included into a model using balance 
equations. It may call for additional processes to be added to the model and each process to be described by 
a particular mathematical term. Alternatively, several natural processes can be described by a single 
aggregated term. 
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It might seem that the more processes are taken into account and included into the model, the better 
simulation results describe the reality, i.e. the more precise the model is. At the same time, an increasing 
level of detail results in a more complex model. This logic leads to an intuitive understanding of model 
complexity which implies that the more complex model is the more state variables and model parameters 
are introduced into the model. 

In computer science, the term ‘complexity’ is used in conjunction with a computational algorithm in order 
to describe its efficiency during runtime. Although an accurate evaluation of the algorithm performance 
needs estimates of the running time and required process space, the primary consideration is given to the 
number of basic operations the algorithm requires to process an input data set of a certain size. Such 
estimates are asymptotic. They help to decide on the applicability of the algorithm to a given data set, 
however, it is hard to use these estimates for comparing two different algorithms with similar complexity. 

Since simulation models are computer programs, the concept of computational complexity can be 
employed to describe their efficiency. At the same time, these computer programs use sets of parameters 
which values are required for simulation runs and must be determined prior to simulation experiments. 
Most of these values are not available through direct observations and depend not only on a given case 
study, but also on mathematical tools used to model real world processes. The process of identifying the 
values of model parameters is another computational algorithm which can be even more sophisticated than 
the algorithm implementing the model itself. Thus, the process of model parameter identification must also 
be taken into account while defining the concept of ‘model complexity’  

2.1. Complexity index 

An attempt to formalize the concept of model complexity was made by Snowling & Kramer (2001) where 
the complexity index was introduced. The index was aimed to take into account the model structure and the 
level of detail in the description of processes included into the model. The index counts the number of state 
variables, the number of processes included in the model, the number of parameters and number of 
arithmetic operations for each term of the model and for the entire model.  The complexity index can be 
evaluated from a Petersen matrix (Petersen, 1965). The index can be used to compare models with different 
mathematical expressions to identify the more complex one. Unfortunately, the complexity index does not 
reflect the type of mathematical terms used in the model, since both linear and non-linear terms can be 
described by the same score, whereas non-linear models should obviously be considered as more complex 
compared to the linear ones. 

2.2. Non-linear models 

When an environmental model is built based on conservation laws, the same natural processes can be 
described by either linear or non-linear terms. The linear expressions result in the algorithms of lower 
complexity, while non-linear models often require iterations to obtain a solution. The non-linearity of 
expressions becomes even more important when models are built based on differential equations. For such 
models, the non-linearity introduces additional stationary points of equilibrium which change the stability 
portrait of the model solutions affecting their dynamic behavior. The model of a one-species population 
serves a good example. With constant rates of the population’s reproduction and mortality, the model 
describes Malthus’s Law. When these rates are represented as functions of the population’s density, the 
model solutions become limited and may describe different types of population’s dynamics (Svirezhev and 
Logofet, 1983).   That is why, a simple replacement of non-linear terms for certain processes by their linear 
approximation can be done for applications, in which simulations actually interpolate values of state 
variables within a limited period of time. However, such substitution may not be valid for long term 
predictions where complex interactions of processes create notable effects on investigated state variables. 
Likewise, reactions of an investigated system to various perturbations cannot be fully described by only 
linear approximation of a model when interactions are imitated by non-linear terms. 

The comparison of the complexity of any two models of the same ecosystem must take into account the 
following model features: the total number of state variables included in the model, the total number of 
model parameters and the non-linear features of the model. It is worth noting that, in general these three 
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features are independent. While first two characteristics can be described using the complexity index, the 
third one cannot be easily quantified and added to the index. An obvious recommendation is that the 
implementation algorithms used for obtaining the model solutions must be also considered when deciding 
on the comparative complexity of the models. In this case, the effect of non-linear terms could be taken into 
account, at least to some extent. 

3. BUILDING AN EMULATOR 

When a decision making process requires large number of simulation experiments, models of reduced 
complexity look very appealing provided that they describe the real world systems as well as complex 
models do. In the traditional problem setting for engineering analysis, to build an emulator means to find an 
approximation F of the outputs y generated by the model M using inputs x such that F is more efficient to 
run and at the same time provides insights into the relationships between x and y. Inputs x are considered as 
controlling factors which can be varied in order to change outputs. The most generic framework for 
metamodelling consists of three main steps: (1) to choose experimental design points xd which determine 
the efficient set of computer runs for generating outputs; (2) to choose a model (an emulator) for the 
approximation; (3) to fit the model to generated outputs (Simpson et al., 2001). While such technical issues 
as non-stochastic nature of the simulation results, the dependency of experimental designs on the chosen 
emulator are well understood and their importance is appreciated, the current study focused on the selection 
of the type of an emulator from application perspectives.  

With respect to environmental models, it is important to distinguish between model state variables xS and 
model parameters p, which values must be specified before simulation experiments. Although initial values 
of model state variables and values of model parameters affect the obtained solutions and both form input 
data set x, their influence is analyzed differently. Model responses to variations of initial values of the 
model state variables are investigated through the model stability analysis. It is worth noting that only 
stable solutions of simulation models can be used for environmental management purposes. Model 
parameters usually reflect factors which are external to the system and control actions. The effect of 
changes in the model parameter values on the model solutions (or outputs) can be investigated through the 
sensitivity analysis, which helps to identify the most important model parameters for a given set of initial 
values of the model state variables. 

Commonly used statistical approaches to building an emulator of a complex model include response 
surface method (RSM), neural network (NN) and kriging. In RSM, a lower order polynomial 
approximation is determined which minimizes the squares of errors or other fitting criteria. Neural 
networks are based on functions of a specific type and they are connected into a network of a particular 
architecture which can be thought as a regression analysis on the specific functions from statistical point of 
view (Cheng et al., 1994). Kriging is an optimal linear interpolation applied to a stochastic process. In all 
three cases, the emulators are constructed using mathematical techniques which significantly differ from 
those used in the original models. This means that the emulators have their own sets of parameters which 
do not overlap with the original model parameter sets in terms of their practical meaning or values. 

3.1. Problem settings for application 

Environmental models can be used in environmental management within different settings. The following 
three settings have been considered in the study: (1) to test possible scenarios via “what-if” analysis; (2) to 
find an optimal or at least satisficing scenario via optimization analysis; (3) to determine key factors for a 
case study at hand. There are publications reporting on the application of emulators in all three settings 
(e.g., Shahsavani and Grimvall, 2011; Makler-Pick et al., 2011). While the first type of analysis can 
undoubtedly be done either on the original model or on the emulator, in the second and third types, 
simulations may become computationally unaffordable due to large numbers of required simulation runs. 
Thus, optimization problems are solved based on algorithms which require iterative evaluation of 
corresponding goal functions or their derivatives until the solution is obtained. The third setting of the 
problem of environmental management is essentially based on model sensitivity analysis. Therefore, the 
replacement of an original model by an emulator looks very attractive with one reservation: it is necessary 
to ensure that the replacement is valid. 
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Setting 2 – optimization analysis 

Strictly speaking, an optimization analysis requires articulation of a goal function G which distinguishes 
between deferent sets of values of the model parameters and initial values of state variables and helps to 
determine the optimal or satisficing solution.  A constraint function restricting the search space can also be 
specified. The Lagrange multiplier method can be used to transform a constrained optimization problem to 
a non-constrained one.  Thus, in the most generic case, the optimization analysis can be converted to the 
problem: 

min ( ( , ))SG M x p .         (1) 

Given that evaluating of M even at a single point is computationally expensive, one may see the 
replacement of model M by its emulator F as an obvious and appropriate course of actions.  However, it is 
necessary to consider the optimization algorithm employed to solve the problem (1).  

While non-gradient optimization involves evaluation and comparison of the goal function G in 
representative points of the search space, gradient methods require calculation of partial derivatives of the 
goal function on the model state variables and/or parameters. The existing methods of emulator 
development use general criteria to approximate the solution of a complex model by a simplified function 
with a desired level of accuracy. It supports expectations that the emulator will generate values which are 
very close to those generated by the original model. As soon as model derivatives must be evaluated, 
emulators become of little help, since their reduced complexity does not allow for accurate evaluation of 
model derivatives.  

The following issues must be taken into account.  Depending on the way the emulator F has been derived, 
it may have a reduced set of state variables and its own parameter set which is different from the set p (e.g., 
Khaiter and Erechtchoukova, 2007). It is obvious that in general case 

( ( , ))( ( , )) SS
new

S S
i i

G FG M

x x

∂∂ ≠
∂ ∂

x qx p
,       (2)  

where 
S
newx is the subset of the original model state variables, which remain in the emulator, q is the set of 

emulator parameters.       

Setting 3 – identification of key factors 

Sensitivity analysis is an important step in a model development and validation (Jakeman et al., 2006). 
Along with that, sensitivity analysis allows for identification of the parameters which contribution to 
variability of the model solution exceeds others, thus, indicating which natural and anthropogenic factors 
are most important.  Although the sensitivity analysis can be implemented based on local or global 
schemes, the evaluation of model output variations in response to a parameter perturbations is common for 

both schemes. Thus, the derivative / jp∂ ∂y can be interpreted as a mathematical definition of the local 
sensitivity of the output y versus parameter pj (Saltelli et al., 2008). As it has been mentioned above, the 
original model and its emulator have different parameter sets and obviously: 

 
( ( , ))( ( , )) SS

new

j j

G FG M

p p

∂∂ ≠
∂ ∂

x qx p
.       (3) 

Inequality (3) shows that the results of global sensitivity analysis implemented on the original model and on 
the emulators will also be different. Thus, any general recommendation to introduce an emulator to 
investigate the original model sensitivity cannot be valid. 
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4. AN ALTERNATIVE APPROACH TO COMPEXITY REDUCTION 

Another commonly accepted approach to reduce model complexity suggests to separate main groups of 
processes and to model the groups using individual modules which all are linked together in a cascade. 
Interactions of processes from different groups are modeled by passing the simulation results on from one 
module to another (Ambrose et al., 1993; Argent et al., 2006). Individual modules in the cascading 
simulation framework support different forms of equations which can be chosen depending on data 
available for a given case study. Processes from different groups may also have different scales in time and 
space. A cascading simulation framework significantly reduces the computational time and space required 
for simulation runs. The modules can be investigated separately and sensitivity analysis can be 
implemented based on original mathematical expression (Erechtchoukova, 2005). 

5. DISCUSSION AND CONCLUSIONS 

Expressions (2) and (3) confirm the fact that equal or very close values of two functions in a certain point 
does not guarantee that their derivatives will also have close values. This means that emulators of complex 
environmental models can be used when only model outputs are required to complete the investigation. If 
the problem calls for optimization methods, it is necessary to ensure that the emulator contains all state 
variables permitting to find a solution, and only non-gradient methods can be recommended to find a 
solutions to avoid misleading results. 

Strictly speaking, a complete sensitivity analysis of an original model based on an emulator constructed 
according to approaches mentioned above is hardly possible. Nevertheless, the attempts to evaluate model 
sensitivity using surrogate models are reported in the literature. With no intention to undermine the works 
done, it is important to stress out that such applications must be considered on a case-by-case basis. It is 
necessary to verify that derivatives of the investigated model and derivatives of its emulator have very close 
values at the design points xd. 

In many cases, complex environmental models with large number of state variables generate prediction for 
indicators of environmental states. All these variables are necessary for simulation, but only a few of them 
correspond to indicators that are of interest or importance from the problem perspectives.  It is advisable to 
investigate the part of the model corresponding to these relevant state variables and to determine sensitivity 
of these state variables to model parameters. The approach to model complexity reduction based on the 
cascading simulation framework can help to obtain realistic assessment of model sensitivity and to 
determine key factors affecting the outcomes of a project at hands. In any case, the choice of a technique 
for metamodelling must be based on a clear understanding of the options available for model usage and 
possible settings of simulation experiments.  

ACKNOWLEDGMENTS 

The authors are grateful to anonymous reviewers for their thoughtful comments and suggestions on the 
improvement of the manuscript. 

REFERENCES 

Ambrose, R.B., Wool, T.A. and Martin, J.L. (1993). The Water Quality Analysis Simulation Program, 
WASP5. Part A: Model documentation. Athens, GA: USEPA ERL.  

Antle, J.M., Capalbo, S.M., Elliott, E.T., Hunt, H.W., Mooney, S. and Paustian, K.H. (2001). Research 
needs for understanding and predicting the behaviour of managed ecosystems: lessons from the 
study of agroecosystems. Ecosystems, 4: 723-735. 

Argent, R.M., Voinov, A., Maxwell, T., Cuddy, S.M., Rahman, J.M., Seaton, S., Vertessy, R.A. and 
Braddock, R.D. (2006). Comparing modeling frameworks – A workshop approach. Environmental 
Modelling and Software, 21: 895-910. 

2175



Erechtchoukova and Khaiter, Metamodelling in sustainable environmental management 

Brundtland, G. (1987). Our Common Future: The World Commission on Environment and Development. 
Oxford University Press, Oxford. 

Cheng, B. and Titterington, D.M. (1994). Neural Networks: A review from a statistical perspective. 
Statistical Science, 9(1): 2-54.   

Erechtchoukova, M. G. (2005). Uncertainty transformation in ecological simulation models. In: Zerger, A. 
and Argent, R. (Eds.) MODSIM2005 International Congress on Modelling and Simulation. 
Modelling and Simulation Society of Australia and New Zealand, December 2005, pp: 2477-2483.  

Jakeman, A.J., Letcher, R.A. and Norton, J.P. (2006). Ten iterative steps in development and evaluation of 
environmental models. Environmental Modelling and Software, 21: 602-614. 

Khaiter, P.A. and Erechtchoukova, M.G. (2007). From complex to simple in environmental simulation 
modeling. In: Oxley, L. and Kulasiri, D. (Eds.) MODSIM 2007 International Congress on Modelling 
and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, 
pp. 2069 - 2075. ISBN: 978-0-9758400-4-7. 

Levin, S.A. (1999). Fragile dominion: complexity and the commons, Reading, Mass: Perseus Books. 

Makler-Pick, V., Gal, G., Gorfine G., Hipsey, M.R. and Carmel Y. (2011). Sensitivity analysis for complex 
ecological models – A new approach. Environmental Modelling and Software, 26: 124-134.  

McIntosh, B.S. and Diez, E. (2008). Assessing the impact of environmental decision and information 
support tools. In: Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A.E. and Guariso,  (Eds.) 4th Int. 
Congress on Environmental Modelling and Software (iEMSs 2008), Barcelona, Catalonia: 
International Environmental Modelling and Software Society: 932-939. 

Mysiak, J., Giupponi, C., Depietri, Y., and Colombini, G. (2008). A note on attitudes towards and 
expectation from the Decision Support Systems. In: Sànchez-Marrè, M., Béjar, J., Comas, J., 
Rizzoli, A.E. and Guariso,  (Eds.) 4th Int. Congress on Environmental Modelling and Software 
(iEMSs 2008), Barcelona, Catalonia: International Environmental Modelling and Software Society: 
925-931. 

Petersen, E. (1965). Chemical reaction analysis. Prentice-Hall, Englewood Cliffs, New Jersey. 

Reichert, P. and Omlin, M. (1997). On the usefulness of overparameterized ecological models. Ecological 
Modelling, 95: 289-299. 

Saltelli, A., Ratto, M, Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Sainsana, M. and Tarantola, S. 
(2008). Global Sensitivity Analysis. The Primer. John Wiley & Sons, Chichester.  

Simpson, T.W., Peplinski, J.D., Koch, P.N. and Allen, J.K. (2001). Metamodels for computer-based 
engineering design: survey and recommendations. Engineering with Computers, 17:129-150.  

Snowling, S.D. and Kramer, J.R. (2001). Evaluating modeling uncertainty for model selection. Ecological 
Modelling, 138: 17-30. 

Shahsavani, D., and Grimvall, A. (2011). Variance-based sensitivity analysis of model outputs using 
surrogate models. Environmental Modelling and Software, 26 (6): 723-730.  

Svirezhev, Yu.M. and Logofet, D.O. (1983). Stability of ecological communities. Mir Publisher, Moscow. 

Van Ness, E.H. and Scheffer, M. (2005). A strategy to improve the contribution of complex simulation 
models to ecological theory. Ecological Modelling, 185: 153-164. 

2176




