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Abstract: A mixture vector autoregressive model has recently been introduced to the literature. This

model consists of a mixture of finite number of vector autoregressive models. The first- and second-order

stationarity conditions have been derived and an EM algorithm for estimation has been proposed. A

mixture of stationary and nonstationary vector autoregressive components may still result in a stationary

model. With the shape-changing predictive distribution, flexible conditional moment and autocorrela-

tion structures, the mixture vector autoregressive model represents an attractive candidate for nonlinear

multiple time series modeling. However, previous methodology has two limitations. First, method for

computing or approximating the standard errors of the estimates has not been investigated. The approx-

imation of the standard errors based on numerical procedures could be seriously inaccurate. Second, as

a multivariate model, the MVAR model contains a large number of parameters in its specification. Es-

timation efficiency for short time series may be poor. Thus, it is important to consider procedures that

eliminate unnecessary parameters and estimate the models with parameter constraints.

The contribution of this paper is threefold. First, a form of parameter constraints is introduced with

an efficient EM algorithm for estimation. Second, an accurate method for computing standard errors is

presented for the model with and without parameter constraints. Lastly, a hypothesis-testing approach

based on likelihood ratio tests is proposed, which aids in the selection of unnecessary parameters and

leads to the greater efficiency at the estimation. An example employing U.S. Treasury constant maturity

rates illustrates the applicability of the mixture vector autoregressive model with parameter constraints,

and the importance of using a reliable method to compute standard errors.
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1 INTRODUCTION

Over the past decade, several new time series models that generalize the idea of finite mixture distribu-

tion (Titterington et al., 1985) to the context of practical nonlinear time series model building have been

proposed. Le et al. (1996) introduced Gaussian mixture transition distribution (GMTD) models to cap-

ture the flat stretches, bursts and outliers in univariate time series. The mixture autoregressive (MAR)

models introduced by Wong and Li (2000) can be considered as a generalization of the GMTD models.

MAR models have several advantages over other nonlinear time series models. First, the mixture of a

nonstationary autoregressive (AR) component with a stationary AR component can result in a stationary

process. Second, the conditional distributions of time series given the past history are changing over

time. Lastly, MAR models can capture conditional heteroscedasticity (Engle, 1982), which is common in

some financial time series. Several extensions of these models have been proposed: i.e., including con-

ditional heteroscedasticity in the components, allowing the mixing proportion to be changing over time,

and replacing the Gaussian assumption with the Student t-assumption. See Wong (2011), Wong and Li

(2001a,b), and Wong et al. (2009) for more details.

Fong et al. (2007) recently generalized MAR models to mixture vector autoregressive (MVAR) models

for multiple time series modeling. These models consist of a mixture of K vector autoregressive (VAR)

models. These researchers gave the first- and second-order stationarity conditions and proposed an EM

algorithm for estimation. Similarly to the univariate case, a stationary MVAR model may consist of a

mixture of stationary and nonstationary VAR components. Although the MVAR model is a promising

candidate for nonlinear multiple time series modeling, their methodology has two limitations. First,

they presented no method for computing or approximating the standard errors of the estimates. The

approximation of the standard errors based on numerical procedures could be seriously inaccurate which

may be due to the irregularity of the log-likelihood surface for the EM algorithm, such as the existence

of local maxima and flat likelihood surface. Reliance on numerical procedures to obtain standard errors

may thus result in false conclusions. Second, as a multivariate model, the MVAR model contains a large

number of parameters in its specification. Estimation efficiency for short time series may be poor. Thus,

it is important to consider procedures that eliminate unnecessary parameters and estimate the models with

parameter constraints.

In this paper, we introduce a form of parameter constraints for MVAR models that is similar to that

presented for VAR models in Lütkepohl (2006). We call MVAR models with and without parameter

constraints constrained and full MVAR models, respectively. We derive an EM algorithm for estimation

in the constrained case. The standard errors of the estimates for both the full and constrained MVAR

models are computed using Louis’ (1982) method. In addition to the criterion-based model selection

approach, we also propose a hypothesis-testing approach based on likelihood ratio tests for identifying

the unnecessary parameters in MVAR models. Extensive simulation studies are conducted to verify the

applicability of our approaches, especially in the case of short time series. Our proposed methodology

is applied to the same dataset considered by Fong et al. (2007) and Tsay (2005), which demonstrates the

usefulness of constrained estimation and the importance of approximating the standard errors accurately

in MVAR modeling.

2 THE MIXTURE VECTOR AUTOREGRESSIVE MODEL

The K-component MVAR model for n-dimensional vector Yt = (Yt,1, . . ., Yt,n)′, denoted by

MVAR(n, K; p1, . . . , pK), is defined as

F (Yt| Ft−1) =

K
∑

k=1

αkN
[

Σ
−1/2
k (Yt − Φk0 − Φk1Yt−1 − · · · −Φkpk

Yt−pk
)
]

. (1)

Here, F (Yt|Ft−1) is the conditional cumulative distribution function of Yt, given past information; Ft is

the information set up to time t; N(·) is the conditional cumulative distribution function of the standard

multivariate Gaussian distribution; Φk0 is an n-dimensional vector, and Φki (i = 1, . . . , pk) are the n×n
autoregressive coefficient matrices; Σk is the n × n positive definite variance-covariance matrix for the

kth component; α1 + · · ·+ αK = 1; and αk > 0 (k = 1, . . . , K). Let p = max(p1, . . . , pK).
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We write Si1i2 for the (i1, i2) element of matrix S and ei for the ith element of the vector e. We also write

In for the n × n identity matrix unless otherwise stated. The determinant of matrix S is written as |S|.
The vectorization operator, vec, is defined as a column vector created from a matrix, say A, by stacking

the column vectors of A one after another, and the Kronecker product A ⊗ B is defined as (AijB).
The half-vectorization operator, vech, stacks the column vectors in the lower triangle of a matrix. As an

example, if S = (Sij) is a 2× 2 matrix, then vech S = (S11 S21 S22)
′ and vec S = (S11 S21 S12 S22)

′.

Here, the transpose of a vector or matrix is denoted by the symbol ′. See Magnus and Neudecker (1988)

for the relationships between the various vector and matrix operators.

2.1 Estimation of Full Model

Suppose that the observations Y1, . . . , YT , are generated from the MVAR model (1), which is referred to

as the full MVAR model hereafter. Define α = (α1, . . . , αK−1)
′, θk = vecΘk where Θk = (Φk0, Φk1,

. . . ,Φkpk
) (k = 1, . . . , K), ωk = vech Σk (k = 1, . . . , K), and the vector of the parameters is defined

as θ = (α′, θ′
1, ω

′
1, . . . , θ

′
K , ω′

K)′. Let Zt = (Zt,1, . . . , Zt,K)′ (t = 1, . . . , T ) be the unobservable

random vectors that indicate from which component Yt evolves, where Zt,k = 1 if Yt evolves from the

kth component and Zt,k = 0 otherwise.

Given Zt, the log-likelihood of the complete data (Yt, Zt) conditional on the first p observations is

` =

T
∑

t=p+1

(

K
∑

k=1

Zt,k logαk −
1

2

K
∑

k=1

Zt,k log |Σk| −
1

2

K
∑

k=1

Zt,ke
′
ktΣ

−1
k ekt

)

, (2)

where ekt = Yt −ΘkXkt and Xkt = (1, Y ′
t−1, . . . , Y

′
t−pk

)′. The iterative EM algorithm for estimation

can be found in Fong et al. (2007).

2.2 Estimation of Constrained Model

A form of linear constraints can be imposed on the parameters of the MVAR model (1). We use the form

similar to the constraints imposed on the VAR model by Lütkepohl (2006, sec. 5.2.1). For k = 1, . . . , K,

let mk be the number of free parameters in the autoregressive coefficient matrices of component k, and

θ
(r)
k be the mk-vector of free parameters. The constraints under consideration are

θk = vec Θk = Rkθ
(r)
k + vec rk (k = 1, . . . , K), (3)

where Rks are known n(npk + 1) × mk matrices and rks are known constant matrices with the same

dimensions as Θk. We refer to the MVAR model (1) together with the constraints (3) as the constrained

MVAR model. For each set of constraints imposed by mk , Rk , and rk (k = 1, . . . , K), there exists a

{(K − 1) + Kn(npk + 1) + Kn(n + 1)/2}× {(K − 1) +
∑K

k=1 mk + Kn(n + 1)/2} matrix R and a

{(K − 1) + Kn(npk + 1) + Kn(n + 1)/2}-vector r such that

θ = Rθ
(r) + r, (4)

where θ(r) = (α′, θ
(r)
1

′, ω′
1, . . . , θ

(r)
K

′, ω′
K)′.

As an example, suppose that the first component of an MVAR(2,2;1,1) model is constrained to have an

upper triangular autoregressive matrix (i.e., upper triangular Φ11). We then have m1 = 5; m2 = 6; R1

is a 6 × 5 matrix with R1,11 = R1,22 = R1,33 = R1,54 = R1,65 = 1 and R1,ij = 0 otherwise; R2 = I6;

θ
(r)
1 = (Φ10,1, Φ10,2, Φ11,11, Φ11,12, Φ11,22)

′; θ
(r)
2 = θ2; r1 = 0; r2 = 0; R is a block diagonal matrix

with the elements or matrices 1, R1, I3, R2, I3 on the diagonal; and r = 0.

The conditional log-likelihood of the complete data (Yt, Zt) for the constrained model is the same as in

(2), except that it is being defined for the new vector of parameters θ(r). The log-likelihood function is

maximized through an iterative EM procedure (Dempster et al., 1977) in which the E step and the M step

are iterated until the likelihood converges.
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E step The missing data Zt are replaced by their expectations, conditional on parameter θ and on

observed data Y1, . . . , YT . The conditional expectation of the kth component of Zt is the conditional

probability that observation Yt comes from the kth component of the mixture distribution, conditional on

θ and Y1, . . . , YT . Let τt,k be the conditional expectation of the kth component of Zt. Then,

τt,k =
αk|Σk|

−1

2 exp
(

−1
2e′

ktΣ
−1
k ekt

)

∑K
k=1 αk|Σk|

−1

2 exp
(

−1
2e′

ktΣ
−1
k ekt

)
(k = 1, . . . , K). (5)

M step Suppose that the missing data are known. The estimates of parameters θ can be obtained by

setting the first derivatives of ` to zero. Then,

α̂k =
1

T − p

T
∑

t=p+1

τt,k (k = 1, . . . , K), (6)

θ̂
(r)
k =

{

R′
k

[(

T
∑

t=p+1

τt,kXktX
′
kt

)

⊗ Σ
−1
k

]

Rk

}−1

×

{

R
′
k

T
∑

t=p+1

τt,kvec
[

Σ
−1
k (Yt − rkXkt)X

′
kt

]

}

(k = 1, . . . , K), (7)

Σ̂k =

(

T
∑

t=p+1

τt,k

)−1 T
∑

t=p+1

τt,kêktê
′
kt (k = 1, . . . , K), (8)

where êkt = Yt − Θ̂kXkt. Due to the interdependence between θ̂
(r)
k and Σ̂k , equations (7) and (8) are

iterated until convergence.

2.3 Observed Information Matrix

The standard errors of the parameter estimates can be obtained by the missing information principle

introduced by Louis (1982). The observed information matrix of the full model, I, can be computed from

the complete information matrix, Ic, and the missing information matrix, Im, with the relation

I = Ic − Im = E

(

−
∂2`

∂θ∂θ′

∣

∣

∣

∣

θ, Y

)

θ̂

− var

(

∂`

∂θ

∣

∣

∣

∣

θ, Y

)

θ̂

. (9)

For the constrained model, the observed information matrix, I(r), can be computed from I with

I
(r) = R

′
IR. (10)

The variance matrix of estimates θ̂ (θ̂(r)) is given by the inverse of observed information matrix

I (I(r)). The variance of estimate α̂K = 1 − α̂1 − · · · − α̂K−1 is given by
∑K−1

k=1 var(α̂k) +
∑K−1

k=1

∑K−1
l=1,l6=k cov(α̂k, α̂l).

3 MODEL SELECTION AND HYPOTHESIS TESTING

Model selection for MVAR models comprises several aspects. First, the number of components, K, is an

important parameter to be determined. Second, we have to select the orders of the vector autoregressive

components, pks. Finally, we may need to omit some of the insignificant parameters in the autoregressive

coefficient matrices. Note that for univariate mixture time series models, the last aspect of model selection

is of less interest, as the efficiency gain in parameter estimation by dropping insignificant parameters is

minimal.

The testing and model selection problems for K are difficult to handle, as they correspond to testing

problems with nuisance parameters, which do not exist under the null hypothesis (Davies, 1977, 1987).
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In particular, the likelihood ratio statistic for a hypothesis such as Φ1i = Φ2i for all i = 0, . . . , p, does not

have the standard χ2 null distribution. Fong et al. (2007) suggested the use of the Bayesian information

criterion (BIC) (Schwarz, 1978) to solve this problem. Through simulation experiments, they illustrated

that the BIC exhibits satisfactory performance in the selection of K. In the context of the constrained

estimation of MVAR models, the BIC is defined as −2`∗+log(T−p){
∑K

k=1 mk+Kn(n+2)/2+K−1},

where `∗ =
∑T

t=p+1 log f(Yt|Ft−1) is the log-likelihood based on f(Yt|Ft−1), the first derivatives of

(1).

After the number of components, K, in the MVAR model has been selected, the BIC can be used to select

parameters pks, as well as the insignificant parameters to be dropped in the autoregressive coefficient

matrices. Alternatively, classical likelihood ratio tests can be performed when the hypotheses are specified

with embedded models, such as that a single parameter in an autoregressive coefficient matrix is zero and

the autoregressive coefficient matrix at a particular lag is zero. The likelihood ratio statistics are defined

as −2(`∗0 − `∗1) where `∗0 and `∗1 are the maximized log-likelihood `∗ under the null and alternative

hypotheses, respectively, and they should have the standard χ2 null distributions. The availability of

the likelihood ratio test enhances the procedure for parameter selection and hence improves estimation

efficiency by reducing the number of free parameters. Care must be taken, however, because two MVAR

models with the same orders may not be embedded, as the model structures may be completely different.

For example, a two-component MVAR model with α1 = α2 = 0.5 is considered to have a different

structure to that of a two-component model with α1 = 0.95 and α2 = 0.05.

4 SIMULATION STUDIES

We have performed a number of simulation experiments for assessing the performance of the constrained

estimation, the model selection with the BIC and the likelihood ratio tests. The results reveal that the

EM estimation procedure for constrained MVAR models has small biases and reasonable standard errors

even with small sample, the performance of the BIC in the selection of K and pks is satisfactory, and the

likelihood ratio tests have reasonable empirical sizes and power.

5 EXAMPLE: U.S. TREASURY CONSTANT MATURITY RATES

The constrained MVAR modeling and the importance of approximating standard errors via Louis’ method

are illustrated using monthly data on 1-year and 3-year U.S. Treasury constant maturity rates from April

1953 to January 2001. These data can be obtained from the Federal Reserve Bank of St. Louis at stlou-

isfed.org. Fong et al. (2007) and Tsay (2005, sec. 8.4) also investigated these data and drawn slightly

different conclusions.

The original series are clearly nonstationary. The log-differenced series seem to be stationary with no

large difference in variability over time despite the two large extreme values. Let Yt = (Yt,1, Yt,2)
′ be

the vector of the log-differenced, or, equivalently, the percentage change in, 1-year and 3-year Treasury

constant maturity rates. The log-differenced series have a length of 573. The log-differenced data exhibit

heavy-tailedness in comparison with a bivariate normal distribution. The excess kurtoses are 5.34 and

1.77 for Yt,1 and Yt,2, respectively. Models, which imply a marginal bivariate normal distribution, such

as the VAR model, may not capture the features of this data well.

We consider two- and three-component MVAR models with the maximum allowable order of four for the

autoregressive components. The number of parameters in the most complicated models are 43 and 65 for

the MVAR(2,2;4,4) and MVAR(2,3;4,4,4) models, respectively. We start our selection process with the

value of pks. The initial values for the EM estimation are αk = 1/K and Σk = I2 (k = 1, . . . , K), and

random numbers are generated from the uniform distribution on the interval [−0.8, 0.8] for the parameters

in θk (k = 1, . . . , K). For each model, 50 sets of estimation results are obtained with different initial

values. The estimation results based on different initial values can differ substantially due to the presence

of local maxima in the log-likelihood. The best two-component model is the MVAR(2,2;2,1) model with

a BIC of −6509.4. The likelihood ratio tests against other candidate two-component models confirm

that this model is the most parsimonious one that is still statistically acceptable. After examining all

possible three-component models, the MVAR(2,3;2,2,1) model with a BIC of −6502.9 is selected. As

the MVAR(2,2;2,1) model has a smaller BIC, we examine it in greater detail. The full MVAR(2,2;2,1)
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Table 1. Estimated full MVAR(2,2;2,1) model

Parameter α1 Σ1,11 Σ1,12 Φ10,1 Φ11,11 Φ11,12 Φ12,11 Φ12,12

Estimate 0.375 0.00708 0.00451 -0.003 0.359 0.476 -0.056 -0.203

s.e. 0.051 0.00089 0.00057 0.006 0.181 0.242 0.174 0.239

Parameter Σ1,21 Σ1,22 Φ10,2 Φ11,21 Φ11,22 Φ12,21 Φ12,22

Estimate 0.00451 0.00367 -0.001 0.290 0.295 0.092 -0.469

s.e. 0.00057 0.00043 0.005 0.132 0.177 0.126 0.176

Parameter α2 Σ2,11 Σ2,12 Φ20,1 Φ21,11 Φ21,12

Estimate 0.625 0.00128 0.00114 0.003 0.031 0.256

s.e. 0.051 0.00018 0.00014 0.002 0.108 0.144

Parameter Σ2,21 Σ2,22 Φ20,2 Φ21,21 Φ21,22

Estimate 0.00114 0.00117 0.001 -0.065 0.347

s.e. 0.00014 0.00013 0.002 0.103 0.131

s.e. = standard error.

Table 2. Estimated constrained MVAR(2,2;2,1) model

Parameter α1 Σ1,11 Σ1,12 Φ10,1 Φ11,11 Φ11,12 Φ12,11 Φ12,12

Estimate 0.358 0.00749 0.00477 -0.003 0.668 0.000 -0.189 0.000

s.e. 0.051 0.00096 0.00061 0.007 0.084 – 0.066 –

Parameter Σ1,21 Σ1,22 Φ10,2 Φ11,21 Φ11,22 Φ12,21 Φ12,22

Estimate 0.00477 0.00385 -0.001 0.479 0.000 0.000 -0.338

s.e. 0.00061 0.00046 0.005 0.062 – – 0.070

Parameter α2 Σ2,11 Σ2,12 Φ20,1 Φ21,11 Φ21,12

Estimate 0.642 0.00132 0.00117 0.003 0.082 0.229

s.e. 0.051 0.00018 0.00014 0.002 0.036 0.083

Parameter Σ2,21 Σ2,22 Φ20,2 Φ21,21 Φ21,22

Estimate 0.00117 0.00119 0.001 0.000 0.296

s.e. 0.00014 0.00013 0.002 – 0.058

s.e. = standard error.

model is shown in Table 1.

The parameters in the autoregressive matrices with small absolute estimate to standard error ratios are

dropped sequentially starting with the off-diagonal elements. The new models are estimated with the

methodology employed in Sections 2.2 and 2.3. Likelihood ratio tests are used to check whether the

dropped parameters should be retained in the models. Based on this strategy, the sequence of parameters

dropped is Φ21,21, Φ12,21, Φ12,12, Φ11,22, and Φ11,12. The estimated constrained MVAR(2,2;2,1) model

with 18 parameters is shown in Table 2. The values of the log-likelihood and BIC are 3325.04 and

−6535.9, respectively. A likelihood ratio test against the full MVAR(2,2;2,1) model gives a statistic of

5.22 with a p-value of 0.390, which indicates that the constrained model is preferable.

In the constrained MVAR(2,2;2,1) model, the log-differenced 1-year and 3-year interest rates are modeled

with two VAR components with different degrees of variability. The first component consists of larger

variances (Σ̂1,11 = 0.00749 and Σ̂1,22 = 0.00385) and a mixing proportion of 0.358. In this component,

the 3-year interest rate depends on the past values of the 1-year interest rate but not vice versa. Changes

in the short-term interest rate have some influence on the long-term interest rate in a volatile interest rate

market. For the second component, with a mixing proportion of 0.642, the variances are smaller, with

Σ̂2,11 = 0.00132 and Σ̂2,22 = 0.00119. In this component, the 1-year interest rate depends on the past

values of the 3-year interest rate but not vice versa. Changes in the long-term interest rate have some

influence on the short-term interest rate in a peaceful interest rate market.

Our conclusion is somewhat different from that of Tsay (2005, p. 374), who suggested that the 3-year
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interest rate does not depend on the past values of the 1-year interest rate. His conclusion is based on

VAR modeling, which may be inappropriate as the log-differenced interest rate exhibits heavy-tailedness.

Fong et al. (2007) suggested that the 3-year interest rate depends on the past values of the 1-year in-

terest rate but not vice versa in the first component, and that the two interest rate series are mutually

correlated in the second component, based on a full MVAR(2,2;3,4) model. However, they computed the

standard errors of the estimates based on a numerical procedure that may be inappropriate because of the

irregularity in the log-likelihood surface. For example, the estimates and standard errors for vec Φ24 are

(−0.169,−0.090, 0.196, 0.096)′ and (0.012, 0.015, 0.030, 0.022)′, respectively in their estimated model

(Fong et al., 2007). Using Louis’ (1982) method which is presented in Section 2.3, the standard errors are

(0.102, 0.093, 0.118, 0.113)′, which implies that none of the parameters in vec Φ̂24 has a large estimate

to standard error ratio. This finding illustrates the importance of using Louis’ method to compute the

standard errors after EM estimation.
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