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Abstract: When it comes to product pricing and reserving, actuaries often need life tables that include a
forecast of future longevity improvement. However, the production of such tables is not straightforward,
because the demographic future of any human population is a result of complex and only partially under-
stood mechanisms, and is highly uncertain. In recent years, actuaries have been understandably concerned
about error in the mortality assumptions they make. Part of their response is a new wave of work that is
focused on the forecasting of uncertainty in longevity improvement, rather than producing a single mor-
tality projection that will almost surely be wrong. This goal is accomplished by using stochastic mortality
models, which have uncertainty embedded within them, as reflected in historical changes.

Given a fitted stochastic mortality model, we can express the uncertainty associated with future death rates
in terms of confidence or prediction intervals. Recently, a group of researchers has proposed using fan
charts to display prediction intervals for future mortality rates. These charts are highly parallel to the well-
known inflation fan charts, which have been produced periodically by the Bank of England since 1996.
A fan chart depicts prediction intervals at different levels of confidence simultaneously. In particular, it
shows the central 10% prediction interval with the heaviest shading, surrounded by the 20%, 30%, ...,
90% prediction intervals with progressively lighter shading. We can therefore interpret the degree of
shading as the likelihood of the outcome – the darker the shading, the more likely the outcome. Mortality
fan charts are highly useful to actuaries, because they provide guidance on how to determine appropriate
margins for adverse deviations.

Existing mortality fan charts are based on isolated pointwise prediction intervals. By pointwise we mean
that the interval reflects uncertainty in a quantity at a single point of time, but it does not account for
any dynamic property of the time-series. However, in actuarial practice, rather than a single death rate
at a particular time point, what practitioners need is the entire trajectory of mortality rates for the birth
cohort in question. Specifically, of their interest would be questions like “Within what bounds would the
trajectory of cohort mortality rates likely to remain with a certain degree of confidence?” From a statistical
viewpoint, a band of pointwise intervals might lead to invalid inference concerning the time trajectory.
In particular, unless all trajectories develop very orderly, a band of pointwise confidence intervals would
understate the actual uncertainty associated with a random mortality trajectory.

In this paper, we overcome this limitation by introducing the concept of time-simultaneous fan charts. In
more detail, instead of pointwise intervals, a time-simultaneous fan chart is derived from a prediction band
with a prescribed probability of covering the whole time trajectory. We present two numerical methods for
producing time-simultaneous fan charts. These methods can be applied to common stochastic mortality
models, including the generalized Cairns-Blake-Dowd model. We illustrate the method with mortality
data from the populations of Australia and New Zealand.
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1 INTRODUCTION

When it comes to product pricing and reserving, actuaries often need life tables that include a forecast of
future longevity improvement. However, the production of such tables is not straightforward. Tuljapurkar
(2005) describes the challenge of forecasting mortality as “a bumpy road to Shangri-La,” because the
demographic future of any human population is a result of complex and only partially understood mecha-
nisms, and is highly uncertain. Indeed, recent mortality data have unfolded significant deviations between
the actual experience and the assumptions that actuaries made in the past (see, e.g., Continuous Mortality
Investigation Bureau, 1999, 2002).

In recent years, actuaries have been understandably concerned about error in the mortality assumptions
they make. Part of their response is a new wave of work that is focused on the forecasting of uncertainty
in longevity improvement, rather than producing a single mortality projection that will almost surely be
wrong. This goal is accomplished by using stochastic mortality models, for example, the Lee-Carter
model (Lee and Carter, 1992) and its variants (e.g., Renshaw and Haberman, 2003, 2006; Delwarde et
al., 2007; Li et al., 2009), which are fitted to historical data. The resulting models have uncertainty
embedded within them, as reflected in historical changes. The use of such a stochastic approach is now
highly regarded by leading actuarial organizations (see, e.g., Continuous Mortality Investigation Bureau,
2004).

Given a fitted stochastic mortality model, we can express the uncertainty surrounding a mortality pro-
jection in terms of confidence or prediction intervals. The interval estimates are crucially important to
life insurers and annuity providers, since they provide guidance on how to determine appropriate margins
for adverse deviations. Recently, Blake et al. (2008) and Dowd et al. (2010) propose expressing such
intervals with mortality fan charts. A mortality fan chart depicts prediction intervals at different levels of
confidence at the same time. In particular, it shows the central 10% prediction interval with the heaviest
shading, surrounded by the 20%, 30%, ..., 90% prediction intervals with progressively lighter shading.
We can therefore interpret the degree of shading as the likelihood of the outcome – the darker the shading,
the more likely the outcome.

Existing mortality fan charts are based on isolated pointwise prediction intervals. By pointwise we mean
that the interval reflects uncertainty in a quantity at a single point of time, but it does not account for
any dynamic property of the time-series. However, in actuarial practice, rather than a single death rate
at a particular time point, what practitioners need is the entire trajectory of mortality rates for the birth
cohort in question. Specifically, of their interest would be questions like “Within what bounds would the
trajectory of cohort mortality rates likely to remain with a certain degree of confidence?” From a statistical
viewpoint, a band of pointwise intervals might lead to invalid inference concerning the time trajectory.
In particular, unless all trajectories develop very orderly, a band of pointwise confidence intervals would
understate the actual uncertainty associated with a random mortality trajectory.

In this paper, we overcome this limitation by introducing the concept of time-simultaneous fan charts. In
more detail, instead of pointwise intervals, a time-simultaneous fan chart is derived from a prediction band
with a prescribed probability of covering the whole time trajectory. We present two numerical methods for
producing time-simultaneous fan charts. These methods can be applied to common stochastic mortality
models, including the generalized Cairns-Blake-Dowd model. We illustrate the method with mortality
data from the populations of Australia and New Zealand.

The rest of this paper is organized as follows. Section 2 describes the modeling of mortality dynamics.
Section 3 presents two methods for constructing time-simultaneous mortality fan charts, and apply the
methods to real mortality data. Finally, Section 4 concludes the paper with some recommendations to
practitioners.

2 MODELING MORTALITY DYNAMICS

We use the generalized Cairns-Blake-Dowd model (Cairns et al., 2009) to model mortality dynamics. The
model can be expressed as follows:

ln

(
qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x, (1)
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where κ(1)t , κ(2)t , and κ(3)t are period risk factors, γ(4)t−x is a cohort risk factor, and σ̂2
x is the mean of

(x − x̄)2 over the age range we consider. The model can be estimated by the method of maximum
likelihood.

Having fitted equation (1) to historical data, the period indexes κ(1)t , κ(2)t and κ(3)t are modeled by a
trivariate random walk with drift, while the cohort index γ(4)t−x is modeled by a first order autoregressive
process. From these two processes, we can obtain a central projection and simulated sample paths of
future death probabilities.

We consider the populations of Australian males and New Zealand males. The required data, death counts
and exposures-to-risk on an annual basis, are obtained from the Human Mortality Database (2011). For
Australia, we have data for years 1921 to 2007, and for New Zealand, we have data for years 1948 to
2008.

3 TIME-SIMULTANEOUS MORTALITY FAN CHARTS

3.1 Definitions

Actuaries need cohort life tables for pricing and reserving purposes. Suppose that the forecast origin is
year T . (We have T = 2007 for Australia males and T = 2008 for New Zealand males.) The cohort life
table for an individual aged x in year T contains the following death probabilities:

qx+1,T+1, qx+2,T+2, . . . .

These death probabilities are not known as of year T and have to be forecasted. We can communicate the
uncertainty involved in the forecast with two types of prediction intervals.

Suppose that the forecast horizon, that is, the period for which the forecast is prepared, is S years. We
say PIs = [ls, hs] is a pointwise prediction interval for qx+s,T+s, s = 1, 2, . . . , S, with a coverage
probability of 0 < 1− α ≤ 1 if

Pr(ls ≤ qx+s,T+s ≤ hs) = 1− α.

A pointwise interval treats the underlying time-series random variable at different time points in isolation.

Denote by q = (qx+1,T+1, qx+2,T+2, . . . , qx+S,T+S) the entire trajectory of death probabilities over the
forecast horizon. Unless all random trajectories develop very orderly, the probability that a trajectory
lies completely inside all S pointwise prediction intervals PIs, s = 1, . . . , S, would be less than 1 − α.
Because actuaries care about the entire trajectory of death probabilities in most situations, mortality fan
charts that are based on bands of pointwise prediction intervals are not sufficient in communicating the
underlying uncertainty.

To improve the communication of uncertainty, we can consider a simultaneous prediction band. We say
PB = [l,h] = ([ls, hs])

S
s=1 is a time-simultaneous prediction band for q with a coverage probability of

0 < 1− α ≤ 1 if

Pr(q ∈ PB) = Pr

(
S⋂

s=1

(ls ≤ qT+s ≤ hs)

)
= 1− α.

In what follows, we describe two numerical methods for deriving time-simultaneous prediction bands
from a stochastic mortality model. We then study how we may construct a mortality fan chart that is
based on time-simultaneous prediction bands.

3.2 Adjusted Intervals

Using the stochastic mortality models described in Section 2, we can simulate realizations of the trajectory
q. Let

Q = {q(n)}Nn=1 = {(q(n)x+1,T+1, . . . , q
(n)
x+S,T+S)}Nn=1
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be a sample of N simulated trajectories. This sample is called the learning sample, which can be used to
derive both pointwise and time-simultaneous prediction bands.

To derive a band of pointwise intervals, we first order the sample {q(n)x+s,T+s}Nn=1, independently for
each s = 1, . . . , S. Let PIs = [ls, hs] be a pointwise prediction interval for qx+s,T+s with a coverage
probability of 1 − α. Then, for each s = 1, . . . , S, the limits ls and hs are set to the bNα/2cth and
dN(1−α/2)eth ordered values in the sample, respectively. Because the pointwise intervals are calculated
by considering each death rate in isolation, the fraction of trajectories that are completely inside all S
pointwise prediction intervals PIs, s = 1, . . . , S, is less than 1− α in general.

From the learning sample, we can also construct a time-simultaneous prediction band which contains a
randomly selected trajectory q(n) in the learning sample Q with a probability of 1−α. We can accomplish
this goal by two numerical methods proposed by Kolsrud (2007).

The first method is called ‘adjusted intervals’, which constructs a time-simultaneous prediction band by
widening the pointwise intervals (with a pointwise coverage probability of 1 − α) uniformly until the
band of intervals has a simultaneous coverage of 1 − α. In more detail, the method of adjusted intervals
can be implemented with the following procedure.

1. For each s =, 1, . . . , S, widen the interval uniformly to include the nearest sample point above and
the nearest sample point below.

2. Check the simultaneous coverage of all intervals in the learning sample Q.

3. If the simultaneous coverage is less than the prescribed level 1 − α, go to Step (1). Otherwise,
terminate the algorithm. The resulting band of intervals would contain no less than 1−α of the tra-
jectories in the learning sample. Note that the final coverage in the sample might be slightly larger
than 1− α, because each uniform widening of all intervals includes at least two new trajectories.

3.3 Chebyshev Bands

The second method is called ‘Chebyshev bands’. This method is based heavily on the concept of en-
velopes. The envelope of a (sub-)sample is the tightest band that contains all trajectories in the (sub-
)sample. For example, the envelope of the learning sample Q can be expressed as

([min
n
q
(n)
x+s,T+s,max

n
q
(n)
x+s,T+s])

S
s=1.

The method of Chebyshev bands constructs a time-simultaneous prediction band as the envelope of a
subsample Q∗ that contains d(1− α)Ne trajectories with the shortest distance to the mean trajectory

q̄ = (q̄x+1,T+1, . . . , q̄x+S,T+S),

where q̄x+s,T+s = 1
N

∑N
n=1 q

(n)
x+s,T+s is the pointwise mean s steps beyond the forecast origin.

The distance to the mean trajectory can be measured in different ways. For example, we can use the
Chebyshev distance,

max
s=1,...,S

(|qx+s,T+s − q̄x+s,T+s|),

or the weighted Chebyshev distance,

max
s=1,...,S

(
|qx+s,T+s − q̄x+s,T+s|

σs

)
,

where

σs =

√√√√ 1

N

N∑
n=1

(qx+s,T+s − q̄x+s,T+s)
2
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is the pointwise standard deviation s steps beyond the forecast origin. In this paper, the Chebyshev
distance is used, because it takes into account the possible heteroskedasticity in the learning sample. This
feature is important in our application since the volatility of the simulated death probabilities increases
with both age and the distance from the forecast origin.

3.4 Constructing the Fan Charts

Given the methods for deriving time-simultaneous prediction bands, we can readily construct a time-
simultaneous mortality fan chart by using the procedure below.

1. Plot the central projection of q with a solid line.

2. Construct a time-simultaneous prediction band for q with a coverage probability of 1 − α = 0.1.
Shade the area between the upper and lower limits of the band.

3. For i = 2, . . . , 9, perform the following two steps:

(a) Construct a time-simultaneous prediction band for q with a coverage probability of 1− α =
0.1i.

(b) Shade, using a lighter color, the area between the limits of the band with a coverage probabil-
ity of 1 − α = 0.1i and the corresponding limits of the band with a coverage probability of
1− α = 0.1(i− 1).

To illustrate, we consider the birth cohort who was aged 60 in year T , where T = 2007 for Australian
males and T = 2008 for New Zealand males. The time-simultaneous mortality fan charts for the two
populations are displayed in Figures 1 and 2. The fan charts shown are constructed with the method
of Chebyshev bands. Those constructed with the method of adjusted intervals (not shown) are highly
similar. Each fan chart shows the central 10% time-simultaneous prediction interval with the heaviest
shading, surrounded by the 20%, 30%, ..., 90% time-simultaneous prediction intervals with progressively
lighter shading. The solid line in the middle of the ‘fans’ indicates the central projection.

Also shown in Figures 1 and 2 are the corresponding fan charts that are based on pointwise confidence
intervals. These fan charts are significantly narrower than the corresponding time-simultaneous fan charts.
In particular, at a prescribed coverage probability of 90%, the pointwise mortality fan charts can only
capture less than 50% of the trajectories in the corresponding learning samples. It is clear that pointwise
mortality fan charts can seriously understate the uncertainty associated with q.

4 CONCLUSIONS AND RECOMMENDATIONS

Because future mortality is difficult to predict, it is important to understand the uncertainty involved in
making a mortality projection. Mortality fan charts can effectively present the degree of uncertainty
surrounding the central mortality projection. As Blake et al. (2008) mention, they have a wide range of
actuarial and financial applications, including pricing, hedging and setting capital requirements.

Nevertheless, mortality fan charts based on pointwise confidence intervals are inadequate, because they
treat death probabilities at different time points in isolation. To overcome this limitation, we have in-
troduced time-simultaneous mortality fan charts, which depict the uncertainty associated with the entire
trajectory of future mortality rates. Such fan charts can be constructed easily with either one of the two
numerical methods we presented.

Our illustrations indicate that the use of pointwise mortality fan charts can seriously understate the un-
certainty surrounding a life table projection. Kolsrud (2007) conducted a deeper analysis of the coverage
levels provided by pointwise prediction bands. It was found that at a prescribed coverage probability of
60%, a band of pointwise confidence intervals can only capture 30.5% of the trajectories. The problem
is even more serious at lower prescribed coverage probabilities. Therefore, in situations when the entire
trajectory of the random quantity is important, a time-simultaneous fan chart should be used instead of a
pointwise one.

The fan charts we produced incorporate the uncertainty arising from the stochastic nature of the assumed
mortality model. However, they do not incorporate parameter uncertainty (i.e., the uncertainty involved
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Pointwise Mortality Fan Chart
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Simultaneous Mortality Fan Chart

Figure 1. Pointwise and time-simultaneous mortality fan charts, Australian males
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Pointwise Mortality Fan Chart
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Figure 2. Pointwise and time-simultaneous mortality fan charts, New Zealand males

1315



Chan W.S. et al., Time-Simultaneous Fan Charts...

in estimating the model parameters) and model uncertainty (i.e., the uncertainty in the model underlying
what we are able to observe). Parameter uncertainty may be incorporated into the fan charts by Bayesian
methods, but the quantification of model uncertainty is a lot more challenging and requires significant
further research.
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