
Comparison of Bayesian Moving Average and
Principal Component Forecasts for Large

Dimensional Factor Models
Rachida Ouysse a

aThe Australian School of Business, The University of New South Wales UNSW, Sydney NSW 2052
Email: rouysse@unsw.edu.au

Abstract: The growing availability of financial and macroeconomic data sets including a large number
of time series (hence the high dimensionality) calls for econometric methods providing a convenient and
parsimonious representation of the covariance structure both in the time and the cross-sectional dimen-
sions. Currently, dynamic factor models constitute the dominant framework across many disciplines for
formal compression of information. Recent econometric research has produced a rich body of theory for
the estimation of these models and their subsequent use for forecasting and for the estimation of structural
economic models.

To overcome the challenges of dimensionality, many forecast approaches proceed by somehow reducing
the number of predictors. Principal component regression (PCR) approach proposes computing forecasts
as projection on the first few principal components of the predictors. Bayesian model averaging (BMA)
approach combines forecasts to extract information from different possible relationships between the
predicted variable and the predictor variables. These two literature apparently moved in two different
directions. However, recent findings by De Mol et al. [2008] and the Ouysse and Kohn [2009] suggest
there are theoretical and practical reasons to connect the two literatures.

This paper provides empirical evidence for connecting these two seemingly different approaches to fore-
casting. We study the performance of BMA as a forecasting method based on large panels of time series
as an alternative to PCR. We show empirically that these forecasts are highly correlated implying simi-
lar mean-square forecast errors. Applied to forecasting Industrial production and inflation in the United
States, we find that the set of variables deemed informative changes over time which suggest temporal
instability. The results can also be driven by the nature of the macroeconomic data which is characterized
by collinearity and that the variable selection is sensitive to minor perturbations of the data. The empirical
results serve as a preliminary guide to understanding the behavior of BMA under double asymptotics, i.e.
when the cross-section and the sample size become large.

Keywords: Bayesian variable selection, shrinkage regression, principal components analysis, factor mod-
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1 INTRODUCTION

This study provides empirical evidence for connecting these two seemingly different approaches to fore-
casting. With the exception of De Mol et al. [2008] who compare the forecasts performance of PCR and
Bayesian shrinkage, little is known about the links between BMA and PCR forecasts. De Mol et al. [2008]
study the empirical and theoretical properties of Bayesian shrinkage and Ridge regression forecasts and
compared them with PCR forecasts. They find that the two methods produce forecasts which are highly
correlated with similar out-of-sample performance. De Mol et al. [2008] are the first to consider double
(N,T ) asymptotics for the case of shrinkage regression with Gaussian prior. They find that consistency
of the Bayesian (Ridge) regression forecast requires that the amount of shrinkage grows asymptotically
at a rate equal to the number of predictors N . In the context of Bayesian variable selection, Ouysse and
Kohn [2009] find that under empirical Bayes prior, more evidence is extracted from the data with a larger
number of cross-sections and not necessarily from longer time series. These findings are consistent with
the convergence result shown by Ouysse [2006] in the context of classical analysis of factor models.

Using the notation in De Mol et al. [2008], consider the (n× 1) vector of covariance stationary processes
Zt = (z1t, · · ·, znt)′ with mean zero and unitary variance. We are interested in forecasting linear trans-
formations of some elements of Zt using all the variables as predictors. Precisely, the aim is to estimate
the linear projection, yt+h|t = proj{yt+h|It}, where It = span{Zt−s, s = 0, 1, 2, · · ·} is a potentially
large information set, and yt+h = (y1,t+h, · · · , ym,t+h) is an m−vector of filtered versions of zit, where
for specific i = 1 · ··, n and 1 ≤ m ≤ n, yj,t+h = fj,h(L)zi,t+h and L is the lag operator defined as
Llzt = zt−l for any integer l.

Traditional time series methods approximate the projection using a finite number, p, of lags of Zt. In
particular, they consider the following regression model:

yj,t+h = Z ′
tβj,0 + · · ·+ Z ′

t−pβj,p + ut+h = X ′
tβj + uj,t+h,

where βj = (βj,0, · · · , βj,p)
′ and Xt = (Z ′

t, · · ·, Z ′
t−p) for each target series j, j = 1, · · · ,m. Given a

sample of size T , let X = (Xp+1, · · ·, XT−h)
′ be the (T−h−p)×n(p+1) matrix of observations for the

predictors and yj = (yj,p+h+1, · · · , yj,T )′ is the (T −h−p)×1 matrix of observations for the dependent
variable. The traditional forecast is given by ŷLS

j,T+h|T = X′β̂LS , where β̂LS
j = (X′X)−1X′yj , j =

1, · · · ,m.

When the size of the information set is large, this projection involves estimation of a large number of
parameters, implying loss of degrees of freedom and poor forecasts. In addition, if n × (p + 1) > T ,
ordinary least squares is not feasible. There are three strands of the literature on forecasting using large
datasets. The first uses factor models and principal components regression (PCR). The second shrinks
to zero the coefficients of the noninformative predictors. Such methods include among others shrinkage
regression such as ridge and lasso. The third is based on model averaging which combines forecasts from
an ensemble of models. In this study, we compare the out-of-sample performance of PCR and BMA
based forecasts. We find that these are highly correlated with marginal differences suggesting that BMA
and PCR may in fact be two sides of the same coin.

2 PRINCIPAL COMPONENT REGRESSION

We consider forecasting situation in which both N and T are large, hence the double (N,T ) asymptotics
with no requirements on the relative rates of convergence of N and T . The number of predictor series can
be very large, often larger than the number of observations as it is the case in macroeconomic forecasting.
Many studies have simplified the high-dimensional problem (N > T ) by modeling the covariability
of the series (the target variables to be forecast and the predictor series) in terms of few number of
unobserved factors. This literature predominately uses principal components analysis (PCA) to estimate
these common factors which are then used in forecasting. To be specific, we assume the following
‘diffusion index’ forecasting framework of Stock and Watson [2002] where (Xt, yt+h) admit a factor
model representation with r common latent factors Ft

Xt = ΛFt + ξt (1)
yj,t+h = δjFt + vj,t+h, j = 1, · · · ,m, (2)
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where Ft = (f1t, · · · , frt)′ are r−dimensional stationary processes, ξt is an N × 1 vector idiosyncratic
disturbances and vt+h is the forecast error. We follow De Mol et al. [2008] and make the following
assumptions about the factors, the N × r matrix Λ of factors loadings, the forecasting equation (2)
and the error terms (ξt, vt+h). The factors Ft are unobserved and the number of common factors r
is also unknown. Principal components regression (PCR) computes the forecasts as a projection on
the first few principal components. Let F̂t be the T × r matrix of the first r principal components of
the predictors X and let Ift = span{f̂1t, · · ·, f̂rt} with r ≪ N be a parsimonious representation of
the information set It. Following De Mol et al. [2008], let Sx be the sample covariance matrix of the
predictors X , Sx = X′X/(T − h − p) and consider the spectral decomposition of Sx: SxV = V D
where D = diag(d1, · · · , dN ) is a diagonal matrix with di corresponding to the ith highest eigenvalue
of Sx, and V = (ν1, · · · , νN ) is the matrix whose columns corresponds to the normalized eigenvectors
of Sx. The normalized principal components are defined as :

f̂it =
1√
di
v′iXt, for i = 1, · · · , N∗

where N∗ ≤ N is the number of non zero eigenvalues.

The principal component forecast is defined as:

yPC
j,T+h|T = proj{yj,T+h|IfT }. (3)

Once the factors are estimated via PCA, the projection is computed by OLS treating the factors as ob-
served:

yPC
T+h|T = θ̂′F̂T , (4)

θ̂j = (F̂T F̂
′
T )

−1F̂ ′
T yj , F̂T = (f̂1T , · · ·, f̂rT )′. (5)

2.1 Shrinkage regression

Ridge regression and the lasso are classical approaches to shrinkage regression defined as:

β̂j

(κ)
= argminβj

{
(yj −Xβj)

′(yj −Xβj) + λ
N∑

k=1

|β(κ)
j,k |

}
(6)

for some penalization parameter λ ≥ 0. Choosing κ = 2 yields ridge regression where β̂j

ridge
=

(X′X+ λIN )
−1

Xyj . Choosing κ = 1 yields the lasso which has no closed form solution but the entire
path of λ can be obtained using the LARS algorithm. Both of the ridge and lasso estimators can be inter-
preted as the posterior mode under a particular prior that assumes independence of the parameters. For
ridge regression the prior is βj |σ2

ϵ ∼ N (0, σ2
ϵλ); for the lasso it is an independent identically distributed

Laplace (double exponential) p(βj,k|σ2
ϵ ) =

λ
2σϵ

e−λ|βj,k|/σϵ .

Large values of the penalty parameter λ cause the coefficients of β̂(κ)
j to be shrunk towards zero. PCR

and Ridge regression give non zero weight to all predictors. The Laplace prior puts more mass near zero
and in the tails inducing either large or zero estimates of the regression coefficients. Therefore the lasso
favors sparse regression coefficients instead of many fairly small coefficients as might result in the ridge
regression.

De Mol et al. [2008] provide conditions under which the ridge forecast is consistent and converges to
the unfeasible optimal forecast obtained if factors are observed. They find that the prior should shrink
increasingly all regression coefficients to zero as the number of predictors rises. Moreover, the shrinkage
parameter λ must grow asymptotically at a rate equal to the number of predictors N .

3 BAYESIAN MODEL AVERAGING

Using the notation in Ouysse and Kohn [2009], consider the econometric model

y = (Im ⊗X)β + ϵ, (7)
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where, y = (y′1, · · · , y′m)′, β = (θ′1, · · · , θ′m), ϵ is an m × T vector of error terms, and Im is an
m×m identity matrix. The specification (7) enables the estimation and inference for the m variables to
be forecast simultaneously as in a system of seemingly unrelated regression. Therefore any correlation
across the idiosyncratic components is taken into account in the posterior inference and therefore allows
for gains of efficiency.

Bayesian variable selection defines a selector vector γ = {γj , j = 0, · · · , N}, where N is the total
number of possible predictors in X, and γj is a Bernoulli random variable that takes value one if predictor
j is allowed in the forecasting model, and zero otherwise. Therefore γ = {γj , j = 0, 1, ..., N} is a
selector vector over the columns of X = (X0, X1, ..., XN ) , where X0 = ιT . Let qγ = γ0 + · · · + γN
be the number of predictors (columns of X) in model γ. Adopting this notation, we can write (7) under
model γ as

y
mT×1

= (Im ⊗Xγ)
mT×mqγ

βγ
mqγ×1

+ ϵ
mT×1

, (8)

where the subscript γ indicates that only columns and elements with the corresponding γ element being 1
are included. Since γ is a binary sequence, the number of models to be evaluated is 2N , which corresponds
to a very large sample space for the empirical example we are treating in this paper with N = 131 and
2N = 2.77× 1039 possible models.

In Bayesian analysis, model selection, estimation of the parameters and inference about γ are done si-
multaneously allowing for uncertainty about all model unknowns to be integrated out in the posterior
inference. We consider a standard hierarchical Bayes prior:

p(β, γ,Σ) = p(β|Σ, γ)p(Σ|γ)p(γ). (9)

A commonly used prior for γ is

p(γ) =
N∏
j=1

πγj (1− π)(1−γj),

with π prespecified. We follow Fernandez et al. [2001] and choose π = 0.5 implying that p(γ) = 2−N .
Using a Normal inverse-Wishart conjugate prior, we implement Bayesian variable selection by specifying
a g-prior for β|Σ as N(0, cΣ ⊗ (X′X)

−1
). The tuning parameter c can be model and data dependent as

in the empirical Bayes prior (EB), hence the notation ĉγ . The larger the value of c, the more diffuse
(flatter) is the prior over the region of plausible values of β. In univariate analysis, the case of c = T
corresponds to the so called unit information prior which has the same amount of information about β
as that contained in one observation. This prior leads to Bayes factors with asymptotic behavior similar
to the Bayesian information criterion (BIC). The risk information prior (RIC) is obtained for c = N2.
A conjugate g-prior with fixed c ∼= 4 corresponds asymptotically to Akaike’s AIC. Finally, George and
Foster [2000] defines the data dependent local empirical Bayes prior

ĉEB
γ = max{Fγ − 1, 0}, where Fγ =

R2
γ/qγ

(1−R2
γ)/(T − 1− qγ)

,

and R2
γ is the R-squared of the regression of y on the covariates of the model γ. See Ouysse and Kohn

[2009] for an adaptation to the multivariate case.

The prior on the covariance of ϵ is a inverse-Wishart Σ−1 ∼ Wm(ω,Φ−1) where Φ is an m × m scale
parameter, ω > m + 1 is a shape parameter. We choose ω = m + 2 which reflects a minimum amount
of prior information and Φ = Σ̂ + s2Im, where Σ̂ is the maximum likelihood estimator for Σ in the
regression of Y on X and s2 is the sample variance in the pooled regression of y on (Im⊗X). The mean
β̃γ of the posterior density p(β|y,Σ, γ) is β̃γ = ηγ β̂γ with ηγ =

cγ
1+cγ

. Therefore the posterior mean of β

shrinks the maximum likelihood estimator β̂γ of model γ towards zero. The term ηγ can be interpreted as
the relative importance or weight that is given to the sample information relative to the prior information.
It also measures the amount of shrinkage implied by the choice of the tuning parameters.
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Table 1: Correlation of BMA out-of-sample forecasts of industrial production with Lasso, Ridge and PC.
Forecast period 1970 : 12 to 2002 : 12

Correlation of forecasts: LASSO with BMA
Number of non zero coefficients

1 3 5 10 25 50 75 Ê (q̂pm)
cγ = T 0.43 0.74 0.80 0.86 0.85 0.78 0.61 7.25
cγ = N2 0.50 0.82 0.85 0.85 0.78 0.69 0.51 2.55
cγ = 4 0.49 0.75 0.80 0.87 0.91 0.91 0.80 32
Correlation of forecasts: RIDGE with BMA

In sample residual variance, κ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 6 25 64 141 292 582 1141 2339 6025
cγ = T 0.65 0.77 0.81 0.82 0.81 0.79 0.74 0.64 0.41
cγ = N2 0.57 0.73 0.79 0.83 0.83 0.82 0.78 0.69 0.46
cγ = 4 0.84 0.90 0.89 0.87 0.85 0.82 0.77 0.69 0.50
Correlation of forecasts: PC with BMA

Number of principal components, r
1 3 5 10 25 50 75

cγ = T 0.21 0.72 0.77 0.79 0.79 0.73 0.61
cγ = N2 0.26 0.77 0.82 0.83 0.80 0.66 0.50
cγ = 4 0.16 0.69 0.72 0.76 0.79 0.82 0.71

Note that in the case the target variables in y are predicted equation by equation and the prior on βj has a
prior N (0, σ2

ϵjcIN ) with data independent covariance, the posterior mean of βj |yj ,X, γ corresponds to

the ridge solution β̂ridge
j with ridge penalization parameter ν = 1/cγ and cγ ≡

σ2
βj

σ2
ϵj

, see De Mol et al.

[2008]. When there is no shrinkage (ν → 0), the ridge solution is the least squares estimator of β. The
latter case corresponds to cγ → ∞, that is a prior with large variance and very little information about β.

In BMA the posterior distributions of quantities of interest are obtained as mixtures of the model-specific
distributions weighted by the posterior model probabilities. The BMA estimate of the posterior predictive
density of yt+h, conditional on y and X (the information at time T ) is:

p(yT+h|y,X) =
∑
γ

p(yT+h|y,X, γ)p(γ|y,X). (10)

The BMA forecast for yt+h, defined as the expected value of the density in (10), is

ŷBMA
T+h|T =

∑
γ

(Im ⊗Xγ)β̃γp(γ|y,X). (11)

Implementation of (11) is difficult because the sum over the 2N possible models is impractical when N is
large. One approach to get around this difficulty is to use MCMC and the simulated Markov chain from
the posterior distribution p(γ|y); γ(j), j = 1, ...,M . The quantity in (11) is therefore approximated using

ŷpm
T+h|T =

1

M

M∑
j=1

(Im ⊗Xγ(j))β̃γ(j) , (12)

where γ(j) is the posterior model in the jth MCMC iteration and M is the number of MCMC iterations.

4 COMPARISON OF BMA AND PC FORECASTS

The data series we use is the same as the one used in De Mol et al. [2008]. The total number of predictors
N = 131 in X includes real variables such as sectoral industrial production, employment and hours
worked; nominal variables such as consumer and price indices, wages, money aggregates; in addition
to stock prices and exchange rates. The data series are transformed to achieve stationarity: monthly
growth rates for real variables (industrial production, sales, etc) and first differences for variables already
expressed in rates (unemployment rate, capacity utilization, etc).
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Let us define IP as the monthly industrial index and CPI as the monthly consumer price index. The
variables we forecast are

zhIP,t+h = (ipt+h − ipt) = zIP,t+h + · · ·+ zIP,t+1

zhCPI,t+h = (πt+h − πt) = zCPI,t+h + · · ·+ zCPI,t+1

IPT = 100 log IPt is the rescaled log of IP , cpit = 100 × log CPIt
CPIt−12

IP enters the panel in first
differences of the logarithm while annual inflation enters in first differences. In this section we compare
the performance of BMA forecasts to those based on principal components and shrinkage (ridge and
lasso) regression. Table 1 show the sample correlation among BMA forecasts and Ridge forecasts ρ̂Ridge,
among BMA forecasts and lasso forecast ρ̂lasso, and among BMA forecasts and principal components
forecasts ρ̂PC . The PCR forecasts depend on the number of factors allowed in the factor structure 1.
Similarly, the Ridge and lasso regression forecasts depend on the choice of the regularization parameter λ
in 6. We follow De Mol et al. [2008] and report sample correlation for r = 1, 3, 5, 10, 25, 50, 75. For the
Ridge regression, the priors are chosen for which the in-sample fit explains a given fraction 1 − κ of the
variance of the variable to be forecast. For the Lasso, the prior on β is selected to deliver a given number
(= r) of non zero coefficients.

The results in Table 1 suggest the following. First, a ranking of the sample correlation with respect to the
choice of the tuning parameter cγ is apparent especially for the shrinkage based forecasts. The sample
correlation is highest or at least reaches a maximum for cγ = 4, followed by the case of cγ = T . The
sample correlation when cγ = N2 comes last. This means that the more informative the priors (therefore
more shrinkage towards zero) the higher is the correlation between the forecasts generated by BMA and
the three methods. Second, for cγ = 4, T the maximum correlation between the lasso forecasts and BMA
is the highest compared to Ridge and PCR. Third, for lasso and PCR, the maximum correlation with BMA
forecasts is reached at the same abscissa, that is for number of non zero coefficients equal to the number
of principal components allowed in the model. This number tends to be small (= 3, 5) for cγ = t,N2

and large (= 50) for cγ = 4.

Table 1 further shows that these patterns generally hold for the full sample and the two subperiods. Under
the priors cγ = T and cγ = N2, the sample correlation ρ̂lasso and ρ̂PC reach a maximum at the same
values of r (10 and 5 respectively). Under the prior cγ = 4, the highest correlation between BMA and
lasso is reached when the number of non zero coefficients is 25 while the correlation of BMA and PC
forecasts is at its maximum for r = 50. The BMA and ridge correlation ρ̂ridge is highest for κ = 0.5
and ν = 292 when cγ = N2, κ = 0.4 and ν = 141 for cγ = T , and κ = 0.2 and ν = 25 for cγ = 4.
The ridge regression shrinks all coefficients towards zero with more shrinkage on low-variance directions.
This means that the ridge will results in many small coefficients. As the shrinkage penalization ν increases
so does the number of non zero coefficients in β̂ridge. A high shrinkage parameter ν corresponds to a
small tuning parameter cγ (cγ ≡ 1/ν). This may explain why the highest correlation between the BMA
and ridge forecasts occurs when cγ = 4 with a 80% explained in sample variance.

The PC regression leaves the r directions with the highest variance alone and discards the remaining
N −r directions. The lasso also truncates at zero and results in r large coefficients and sets the remaining
N − r to zero. This may explain the similarities of the patterns observed in the the sample correlation
between BMA forecasts and those generated by lasso and PCR. In the last column in Table 1, we report
the BMA estimate of the model size for the three priors. The results reflect the amount of shrinkage
implied by these choices of cγ . The size of the posterior mean model is decreasing in cγ with cγ = N2

resulting in the smallest posterior mean estimate of the model size. We observe that the BMA estimate
for the model size q̂pm = 2.55 under cγ = N2 and the maximum correlation between BMA and both
PCR and lasso forecasts is reached when r = 3. We also have notice that under cγ = T , q̂pm = 7 and
the maximum correlation between BMA forecasts and lasso occurs for r = 10 and for BMA and PCR
forecasts this number is r = 3. Finally for cγ = 4, the maximum correlation between BMA and both
lasso and PCR forecasts is at r = 50 at the same time we have q̂pm = 32.

To examine the relative performance of BMA compared to PCR, we report the MSFE relative to the
random walk and the variance (number in parenthesis) of the forecasts relative to the variance of the
series to be forecast in Table 2. Under each MSFE row, we report the variance of the forecast relative
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Table 2: Comparison of principal component and Bayesian model averaging forecasts.
Industrial Production

Bayesian model averaging Principal Component

BMA r

cγ = T cγ = 4 ĉEB
γ cγ = N2 5 10 25

MSFE 1971 − 2002 0.8779 0.8635 0.8592 0.8700 0.56 0.54 0.65
(0.66) (0.51) (0.49) (0.50) (0.97) (1.28)

MSFE 1971 − 1984 0.5645 0.6997 0.6882 0.7039 0.35 0.34 0.46
(0.54) (0.47) (0.44) (0.45) (0.93) (1.11) (1.43)

MSFE 1985 − 2002 1.8071 1.3490 1.3664 1.3625 1.16 1.13 1.21
(1.01) (0.62) (0.63) (0.62) (0.33) (0.51) (0.79)

Consumer Price Index
Bayesian model averaging Principal Component

BMA r

cγ = T cγ = 4 ĉEB
γ cγ = N2 5 10 25

MSFE 1971 − 2002 0.7861 0.7761 0.8045 0.7777 0.57 0.69 0.83
(0.50) (0.52) (0.53) (0.52) (0.61) (0.63) (0.69)

MSFE 1971 − 1984 0.6773 0.6789 0.7137 0.6839 0.39 0.48 0.56
(0.49) (0.49) (0.50) (0.50) (0.57) (0.57) (0.60)

MSFE 1985 − 2002 1.2970 1.2327 1.2308 1.2179 1.43 1.71 2.11
(0.53) (0.61) (0.61) (0.59) (0.73) (0.83) (0.95)

to the variance of the series. We examine the results for BMAX which refers to the econometric model
(7) where we apply BMA directly to all available predictors in X. In terms of MSFE and over the three
sample periods, PCR performs its best when r = 10 for industrial production and r = 5 for consumer
price index. It also outperforms BMA for all the choices of cγ . However, BMA forecasts tend to have
lower variance relative to the forecasts of the series of interest. This observation holds also for the
consumer price index forecasts.

5 CONCLUSIONS AND RECOMMENDATIONS

To overcome the challenges of dimensionality in forecasting with large number of predictors, PCA and
BMA stand out as the most popular methods in the recent literature. This study compares these seemingly
unrelated approaches in an empirical application. The results are promising and suggest that for the
purpose of forecasting, the two approaches are capturing the same information from the data. The out-
of-sample forecasts are highly correlated and the two methods are relatively similar in terms of mean
squared forecast errors. These results are purely empirical and provide a motivation to establishing the
theoretical foundations that link the two approaches in the forecasting framework.
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