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Abstract: Alzheimer's is a growing problem within today's society. The risk of Alzheimer increases 
exponentially with each decade an individual ages, and its fatality rate is hundred percent. Furthermore, no 
concrete methods of identifying the development of Alzheimer during a patient's lifetime exists, only through 
post-mortem analysis can we definitely conclude if the victim succumbed to Alzheimer's. Additionally, if the 
symptoms of Alzheimer's can just be offset by merely five years, trillions of dollars can be saved from 
healthcare costs (O'Connor 2010). 
 
The disease itself is fairly well documented: it has been shown that Amyloid- β proteins as well as 
phosphorylated Tau proteins are important in the role of developing Alzheimer's disease (Ihara 1986; Soscia 
2010). Recent research provides that the buildup of amyloid- β plaques may be a result of an overactive 
immune system (Kolata 2010), and that the amyloid- β plaques themselves may even be anti-microbial 
particles that build up after being over-exposed (Soscia 2010). However, despite the research that has been 
done on Alzheimer's, little funding is going into researching a cure, or a way to lessen the impact of 
Alzheimer's on our aging population. Given the fact that every penny the National Institutes of Health spends 
on Alzheimer research, healthcare providers spend $3.50 caring for Alzheimer's patients, further coupled 
with the fact that every second, a baby-boomer reaches his 65th birthday, Alzheimer's is a problem that must 
be addressed immediately (O'Connor 2010). 
 
In order to address the problem, we have used Bayesian networks to identify which genes  play an important 
role in Alzheimer’s disease, and to illustrate the interactions among relevant genes. We have identified six 
human gene expression case control studies using microarray data and found 11 relevant genes that are 
related to Alzheimer's disease, four of which are strongly associated with Alzheimer's: TGFB1I1, LTF, 
TLX2, and LTB4R. We then analyzed this data, to identify pertinent interactions between the 11 genes.  
 
Using the data collected, we further calculated the lifetime risk, as well as the odd ratio of developing 
Alzheimer's disease, given the expression levels of combinations of genes. Females (aged 65+) with over-
expressed TGFB1I1 and LTF, combined with under-expressed TLX2 and LTB4R showed a heighted 61% 
remaining lifetime risk of developing Alzheimer's disease, while males (aged 65+) with the same expression 
patterns of the genes showed a heighted 44% remaining lifetime risk of developing Alzheimer's disease. 
Furthermore, odd of developing Alzheimer's disease for an individual with normally expressed LTF and 
TLX2, under-expressed TGFB1I1, and over-expressed LTB4R is 25 fold higher than that of an individual 
with the same expression patterns of the genes except for an over-expressed TLX2. Given these findings we 
can help create effective methods of diagnosing patients with Alzheimer's disease and ultimately help create 
effective treatments for Alzheimer’s patients.   
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Figure 1 LTF and TGFB1I1 are related to 
TLX2 only through Alzheimer 

 
 
1. INTRODUCTION 
 
Alzheimer's is an emerging disease that can have serious consequences if left unchecked. Already, we see 
that Alzheimer's carries a 100% fatality rate, and can easily be confused with dementia and other 
neurodegenerative illnesses. More worrisome is the lack of effective diagnosis of Alzheimer's, with many 
doctors being forced to do "trial-and-error" experiments to try to rule out Alzheimer's. Even more alarming is 
the fact that in the U.S. alone, every second a baby-boomer reaches their 65th birthday (O'Connor 2010). The 
implications of which mean there will be an increased burden on the working younger class, who will have to 
support the fast growing elderly population. For many, a cure would be preferred, however, even if it was 
possible to offset the emergence of Alzheimer's symptoms in patients for 5 years, trillions of dollars can be 
saved, lifting some weight off the already burdened American economy (O'Connor 2010). 
 
Existing research already provides why the symptoms of Alzheimer's  manifests in its patients. Abnormally 
high amyloid- β protein levels, as well as abnormally high levels of phosphorylated Tau proteins lead to 
plaque buildup in the brain, causing the neurodegenerative illness to appear (Selkoe 2001). Recent research 
also suggests that the reason the plaques are appearing in the brain, is due to an overactive immune system, 
where the amyloid- β proteins serve as anti-microbial units (Soscia 2010), that end up combining into plaques 
(Kolata 2010). In addition to the amyloid- β proteins, Tau proteins have also been observed in Alzheimer's 
patients. There are three versions of Tau proteins, however they can be grouped into two separate states, 
phosphorylated and non-phosphorylated. A non-phosphorylated Tau protein is important in maintaining the 
integrity of the brain structure by reinforcing microtubule molecule (Kirschner 1986). However, a 
phosphorylated Tau protein ends up disrupting microtubule function, causing neurodegenerative symptoms to 
appear, hastening the onset of Alzheimer's. 
 
In order to properly diagnose and treat Alzheimer's disease, we have to look towards both the Tau and 
Amyloid proteins as a whole.  It has been shown that for Alzheimer's disease to take hold of a patient, both 
the Tau Proteins, and Amyloid plaques must exist within the brain (Selkoe 2001). Given that information, it 
is unlikely only one gene controls the expression of Alzheimer's. Tanzi and Bertram (McGreevey 2008), have 
hypothesized that there are four genes that all may contribute to plaque buildup, and phosphorylated Tau 
proteins. By looking at various gene expression case control studies, 
we can identify which genes are either activated or suppressed in 
Alzheimer's patients, as compared to normal individuals. Further 
using that information, we can create a statistical model that 
calculates lifetime risk, as well as the risk of developing Alzheimer's 
during an individual's lifetime. 
 
2. METHODS AND PROCEDURES 
 
We used Bayesian networks to find the key genes in developing 
Alzheimer's Disease and their possible interactions. 
 
2.1 Bayesian Networks 
 
The Bayesian network is represented as a directed acyclic graph where each arc is identified as a direct 
(causal) influence between the parent node and a child node in relation to all other nodes in a network (Pearl 
1998). Figure 1 shows the network that represents the interactions among Alzheimer key genes. 
 
A typical Bayesian network consists of a structure (such as that shown in Figure 1) and a set of probabilities 
that parameterize the structure (not shown). In general, for each node, there is a conditional probability of 
that node, given the states of its direct parent. For example, in Figure 1, the probability associated with 
Alzheimer is P(Alzheimer | TGFB1I1). That is, we give the probability distribution over the values of 
Alzheimer, which are conditioned by the possible values of TGFB1I1. For other variables that contain little 
direct relationships in the network, a prior probability is given. The Markov condition (Spirtes, Glymour et 
al. 2000) specifies the conditional independence relationships that are shown in a Bayesian network: Let X 
and Y be variables. Y is neither a direct nor indirect effect of X. Then X is independent of Y, conditioned on 
any state of the direct causes of X. The causal Markov condition permits the joint distribution of the n 
variables in a causal Bayesian network to be shown as follows (Pearl 1988) 
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Table 1. GEO Data Studies, with patient size and total patients per study 
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where xi denotes a state of the variable Xi, πi denotes a joint state of the parents of Xi and K denotes 

background knowledge. 

 
Also, from a Bayesian network structure, we can learn interactions among the model variables by using arcs 
orientations (converging, diverging and serial) (Charniak 1991). For 
example, in the network shown at right, either it rains (R) or you turn 
on the sprinkler (S), it makes your lawn wet (L) (converging arcs 
that are going into L). Note that, however, if you know your lawn is 
wet (L) and if there is a low chance that it  rained (R) then there is a 
high chance that your sprinkler was on (S), in other words, if converging arcs into L, then R and S becomes 
dependant given L. Also note that if it rains (R), your lawn (L) and your neighbor lawn get wet (N) 
(diverging arcs that are originated from R). If you know it rained (R), knowing your lawn is wet will not tell 
you much more about your neighbor lawn being wet (N), in other words, if diverging arcs from R, then L 
and N becomes independent given R. If it rains (R), then your neighbor lawn gets wet (N), and eventually, 
your neighbor lawn gets green (G) (serial arcs that are from R to N to G). In this case, if you know your 
neighbor lawn is wet (N), then knowing whether it rained (R) or not will not tell you much more about your 
neighbor lawn getting green (G), in other words, if serial arcs through G, then R and G is independent 
given N.  
 
2.2 Dataset Preparation 
 
We collected the data from Gene Expression Omnibus (GEO) (NCBI 2011), which is a database that contains 
microarray data performed by researches across the globe. We first  identified case-control gene expression 
studies with human subjects in 
GEO. The studies that were 
identified are shown in Table 1. 
 
For each study, we calculated the 
average expression levels of 
each gene for both Alzheimer 
and control subjects. Then we 
sorted the average gene 
expression levels from lowest to 
highest with regards to the 
control subjects. We split the 
sorted genes into two groups 
according to the average gene 
expression levels:  high-
expression genes, and low-
expression genes. In order to 
find the high-expression genes, 
and low-expression genes, we 
first identify the line of best fit. From the median gene expression value, we then split the genes using the line 
of best fit, giving us high-expression genes (genes lying above the line) and low-expression genes (genes 
lying below the line). From there we calculated a percent difference of the average gene expression levels for 
the high-expression genes, and low-expression genes by using a percent change formula: 
ܣ∆  = ௗܣ − ௗܣܣ × 100 (2) 
 
Where Ad  represents the averages of gene expression levels in Alzheimer patients, and Ac represents the 
averages of gene expression levels in the control patients. The resulting value ∆A is the percent change of 
gene expression from Alzheimer to control patients. By doing so we were able to find which genes had the 
largest expression level discrepancies between the normal and diseased individuals. The percent change of 
gene expression is then sorted from the smallest to the largest per group, giving us the highest percent change 

Study Name Author Study Size 
(Number of 
Patients) 

Number of 
Diseased 
Patients 

Number 
of Control 
Subjects 

Platform 

Alzheimer's Disease at various 
stages of Severity 
(Blalock 2004) 

Eric M. 
Blalock 

31 22 9 GPL96 

Expression of MRNA's Regulating 
Synaptic Function in Incipient 
Alzheimer's Disease 
(Williams 2008) 

Celia 
Williams 

14 6 8 GPL96 

mRNA and miRNA expression in 
parietal lobe cortex in Alzheimer's 
Disease 
(Nunez-Iglesias 2009) 

Juan Nunez-
Iglesias 

8 4 4 GPL570 

Alzheimer's Disease: Neurofibillary 
Tangles 
(Hamill 2006) 

Brandy 
Hamill 

20 10 10 GPL570 

Alzheimer's Disease Peripheral 
Blood Mononuclear Cell Expression 
(Maes 2006) 

Oliver 
Charles Maes 

28 14 14 GPL121
1 

Transcriptomes in Peripheral Blood 
Mononuclear Cells of Alzheimer's 
Patients 
(Chen 2009) 

Kuang-Den 
Chen 

9 6 3 GPL570 

 TOTAL 
PATIENTS 

110 62 48  
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Figure 2. Local Network showing genes of 
Markov Blanket of Alzheimer (Red) with 

additional genes that are Markov Blanket of genes 
in red (Green) 

of gene expression from genes with low expression and from genes with high expression. In the datasets we 
collected, low-expression genes with smaller values had higher percent change of gene expression than high-
expression genes with larger expression levels. For each study, we  selected equal number of genes from 
high-expression and low-expression groups, approximately 5,000 genes from each and then searched for  the 
common recurring genes among the six studies. The end product left us with 131 high percent difference 
genes that were common to all six studies. We then discretized each gene’s expression level into three states; 
under-expressed (Low), normal expression (NoChange),  and over-expressed (High). With the discretized 
data file, we looked at the interactions between the 131 genes with Bayesian networks. 

 
2.3 Analysis 
 
We used a program called Bayesian Network Inference with Java Objects (Banjo) (Hartemink 2006) to help 
analyze the 131 genes. We ran our data through Banjo a total of 12 runs on 3 different machines. Each 
machine ran Banjo for three hours, six hours, nine hours, and 12 hours. We then collected the most reliable 
results, and put our results into the Graphical Network Interface (GeNIe) allowing us to look into the 
interactions among the genes that were found in  Alzheimer's 
studies. 

 
3. RESULTS 
 
Based on the highest scoring global Bayesian network (shown in 
Appendix A),  out of 131 genes collected, 108 genes were 
associated with Alzheimer's Disease. From the Bayesian network,  
we identified four genes that are Markov Blanket (MB)1 of 
Alzheimer's: i.e., TGFB1I1, LTF, TLX2, and LTB4R (genes 
marked with red in Figure 2; we refer these four genes as 
“Alzheimer MB genes”). 
 
We further report an additional seven genes, KRT7, PVRL1, 
PREPL, TUSC3, PITX1, and IRAK4 that are Markov Blanket of 
Alzheimer MB genes. Additionally we created a local network 
(from the highest scoring  global Bayesian network) with the 11 key 
genes related to Alzheimer's, shown in Figure 2. 
 
As discussed in Section 2.1 (Charniak 1991), t from Figure 2, we can infer how other genes are interacting in 
changing the risk of Alzheimer. For example, LTB4R is independent of Alzheimer, unless we know anything 
about KRT7 or TLX2. Also, TGFB1I1 and LTF are associated with LTB4R only if we know the state of 
TLX2. 
 
In order to find all the possible conditions from these 11 genes − each with three expression states, i.e., 
Under-Expressed (Low), Normal Expression (NoChange), and Over-Expressed (High) − for calculating 
conditional probabilities of Alzheimer, we generated a C++ code using SMILE (DecisionSystemsLaboratory 
2007) that calculates all the conditional probabilities. The end result gave 4,194,304 (= 411) unique gene 
conditions among the 11 key genes.  From those 4 million conditions, we searched for the conditions of 
genes that yielded the highest conditional probability of Alzheimer. According to a study done by the Boston 
University School of Medicine (Seshadri 1997), the lifetime risk of 65 and above male and female are 0.06 
and 0.12 respectively. Note that all the conditional probabilities of Alzheimer are calculated using the 
following Bayes’ rule to report the increment of lifetime risk for male and female compare to the baseline: 
݁݊݁݃|ݎℎ݁݅݉݁ݖ݈ܣ)ܲ  (ݏ݊݅ݐ݅݀݊ܿ = ܲ(݃݁݊݁ (ݎℎ݁݅݉݁ݖ݈ܣ|ݏ݊݅ݐ݅݀݊ܿ ∙ ݁݊݁݃)ܲ(ݎℎ݁݅݉݁ݖ݈ܣ)ܲ (ݏ݊݅ݐ݅݀݊ܿ  

 

 
(3) 

where we used P(Alzheimer) as 0.06 for male and 0.12 for female. All the other probabilities were calculated 
from SMILE. 

                                                            
1 The Markov Blanket of the Alzheimer node, i.e., the parents, children, and parents of children of the Alzheimer node. Nodes in 
Markov Blanket of the Alzheimer node completely determines Alzheimer node’s outcome, i.e., if we know expression level of LTB4R, 
TGFB1I1, TLX2, and LTF, then knowing other gene’s expression level will not change the probability of a subject having Alzheimer’s 
disease. 
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Table 2. One Gene odd ratio with two tailed confidence intervals 

Table 3. Four, three, and two gene odd ratios with two tailed 
confidence intervals 

 
                                                                                    
In Table 2, we report the odd ratios of three genes, TLX2, TGFB1I1, and LTF. Of the six odd ratios that were 
calculated, the top three odd ratios show that the odds of a person with a normally expressed TGFB1I1 

(NoChange) to a person with under-expressed 
TGFB1I1 (Low) of developing Alzheimer's is 
almost six-fold. Furthermore, if a person has a 
normally expressed TLX2 (NoChange) compared 
to a person with a over-expressed TLX2 (High) 
the chance of developing Alzheimer is 3.35 times 
as likely. Moreover, if a person has a normally 
expressed LTF (NoChange) compared to a person 
with an under-expressed LTF (Low) the chance 
of developing Alzheimer's is approximately 2.8 
times as likely.  
 
We also calculated highest odd ratios for the conditions for four genes, three genes, as well as two genes 
combinations (Table 3).  The highest odd ratio of the four 
genes combinations showed that when  
an individual who has normally expressed (NoChange) 
LTF and TLX2, over-expressed (High) LTB4R, as well as 
under-expressed (Low) TGFB1I1, showed 25 times more 
odd of developing Alzheimer's compared to a person who 
has the same gene expression levels except TLX2 being 
High. Additionally the highest odd ratio of three genes 
combinations presented when comparing and individual 
who has a normally expressed LTF (NoChange) and over-
expressed TLX2 and TGFB1I1(High) with an individual 
that has and the same gene expression levels except 
TGFB1I1 being Low, then the odds of developing 
Alzheimer's reach close to 23 times higher. The highest 
odd ratio of two genes combinations were identified when 
comparing and individual who has under-expressed (Low) 
TLX2 and LTB4R with an individual that has and the 
same gene expression levels except TLX2 being High, 
then the odds of developing Alzheimer's is 11 times 
higher. 
 
Table 4  shows the highest lifetime risk calculated by a single gene, two genes, three genes, and four genes, 
as well as the lowest lifetime risk calculated by single gene, two genes, three genes, and four genes. Note that 
because of the property of Markov Blanket, no genes more than the four Alzheimer MB genes will produce 
higher lifetime risk. From there, we can see that if a male (aged 65 and older) has an over-expressed 
TGFB1I1 and LTF, with an under-expressed TLX2 and LTB4R, the probability of developing Alzheimer's is 
close to 0.44 (more than 7 times than baseline of 0.06 found by Seshadri in 1997), whereas a female (aged 65 
and older) with the same genetic expression has 0.66 chance of developing Alzheimer's (more than 5 times 
than baseline of 0.12, also found by Seshadri in 1997). Inversely we can see that the probability of 
developing Alzheimer's for a male (aged 65 and older) with a normally expressed LTF and TUSC3 
(NoChange), an under-expressed (Low) TGFB1I1, and an over-expressed (High) KRT7, TLX2, PITX1, 
PVRL1, and IRAK4 is approximately 0.00104 (less than 0.02 times the baseline of 0.06), whereas a female 
(aged 65 and older) with the same genetic expression has the probability of approximately 0.0021 (which is 
also less than 0.02 times the baseline of 0.12) . 
 
 
 
 
 
 
 
 

Condition  Reference Condition Odd Ratio 95% Confidence Interval  
TGFB1I1=NoChange TGFB1I1=Low 6.533 2.912 ≤ X ≤ 14.661 

TLX2=NoChange TLX2=High 3.351 1.607 ≤ X ≤ 6.988 

LTF=NoChange LTF=Low 2.821 1.365 ≤ X ≤ 5.834 

TLX2=Low TLX2=NoChange 2.214 1.040 ≤  X ≤ 4.714 

TGFB1I1=High TGFB1I1=NoChange 1.697 0.811 ≤ X ≤ 3.551 

LTF=High LTF=NoChange 1.215 0.601 ≤ X ≤ 2.458 

Condition Reference 
Condition 

Odd 
Ratio 

95% Confidence 
Interval 

TGFB1I1=Low 
LTF=NoChange 
TLX2=NoChange 
LTB4R=High 

TGFB1I1=Low 
LTF=NoChange 
TLX2=High 
LTB4R=High 

25.17 3.774 ≤  X ≤ 167.911 

LTF=NoChange 
TGFB1I1=High 
TLX2=High 

LTF=NoChange 
TGFB1I1=Low 
TLX2=High 

23 
 

5.598  ≤  X ≤  94.5 

LTF=High 
TGFB1I1=Low 
TLX2=High 

LTF=NoChange 
TGFB1I1=Low 
TLX2=High 

21 5.107  ≤  X ≤  86.353 

TGFB1I1=High 
TLX2=Low 
LTB4R=Low 

TGFB1I1=High 
TLX2=High  
LTB4R=Low 

11.11 3.927 ≤  X ≤ 31.439 

TGFB1I1=High 
LTF=High 
TLX2=Low 
LTB4R=Low 

TGFB1I1=High 
LTF=High 
TLX2=High 
LTB4R=Low 

11.11 3.663 ≤  X ≤  33.708 

TLX2=Low 
LTB4R=Low 

TLX2=High 
LTB4R=Low 

11.11 4.672  ≤  X ≤  26.424 

TGFB1I1=High 
TLX2=Low 
LTB4R=Low 

TGFB1I1=Low 
TLX2=Low 
LTB4R=Low 

11.09 
 

3.919  ≤  X ≤  31.376 

TGFB1I1=High 
TLX2=Low 
LTB4R=Low 

TGFB1I1=Low 
TLX2=Low 
LTB4R=Low 

11.09 
 

3.919 ≤  X ≤  31.376 

TGFB1I1=High 
TLX2=High 

TGFB1I1=Low 
TLX2=High 

11.09 
 

3.748  ≤  X ≤  32.805 
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Table 4. Lifetime Risk Calculation given Gene conditions 

 
4. DISCUSSION 
 
Using the data we have gathered from 
GEO studies, the analysis we performed 
with the resulting Bayesian networks 
provides significant insight into the 
genetic components of Alzheimer's 
Disease. We identified 11 key genes, as 
well as various other gene combinations 
among the 11 genes that appear to be 
strongly linked to Alzheimer's Disease. 
Of the 11 key genes, the four Alzheimer 
MB genes showed close relationships to 
Alzheimer's. TLX2, one of the 
Alzheimer MB genes, is a gene that 
shows promise in treating 
neurodegenerative diseases (Bernardo 
2006). TLX2, known by its alias, NCX 
has shown to have strong anti- anti-
amyloidogenic properties, which may 
aid in the clearing, or forestalling of 
amyloid- β proteins in the brain (a 
signature earmark of Alzheimer's 
disease). LTF, another Markov gene, 
appears to be "of importance in 
assessment of the Alzheimer's disease 
pathology" (Berdel 1994). LTF is known 
to be associated with anti-microbial 
activity, as well as anti-inflammatory 
activity, which may have importance in 
the development of Alzheimer's (Kolata 
2010). TGFB1I, which codes for a 
protein called Hic-5 also appears to have 
connections to Alzheimer's (Caltagarone 
2010). TGFB1I1's encoded protein, Hic-
5 is thought to regulate androgen 
receptor activity, with links to regulating 
cell growth, proliferation, migration and 
differentiation (UniProt 2011). LTB4R, 
currently does not have any supported 
scientific records tying it to Alzheimer's 
disease, further requiring study will 
provide a definite analysis on LTB4R, 
and whether or not it may be pertinent in 
the development of the disease. 
 
Our study was designed to try to identify 
certain genetic interactions that might 
intermediate the development of 
Alzheimer's disease. However, the study 
was not able to completely encompass 
all the genetic components of Alzheimer's, due to incomplete data provided through GEO. Since all of the 
GEO studies did not provide additional important variables, e.g., gender, age, ethnicity, and other basic 
information, we calculated two different lifetime risks, female (aged 65+) and male (aged 65+), using 
information provided by the National Institutes of Health (NIH). Furthermore, we had intended to perform a 
cross-database search with Entrez to see which genes from our Banjo study would overlap with existing 
Alzheimer's genes in Entrez. The result gave us similar genes, or genes in the same family as one another (i.e. 
TGFB1I1 v. TGFB1) but not exactly case-by-case similar genes. Despite being only similar genes, with 

Condition Lifetime risk 
(Female) 

Lifetime 
risk (Male) 

Condition Lifetime risk 
(Female) 

Lifetime 
risk (Male) 

TGFB1I1=High 
LTF=High 
TLX2=Low 
LTB4R=Low 

0.6134 0.4389 TGFB1I1=Low  
LTF=NC 
TLX2=High 
LTB4R=High 

2.088xE-03 1.031xE-03 

TGFB1I1=High 
LTF=High 
TLX2=Low  
PREPL=Low  
KRT7=Low  
PVRL1=Low 

0.5865 0.4116 TGFB1I1=Low  
LTF=NC  
TLX2=High  
PREPL=NC  
KRT7=High 
 PVRL1=High 

2.092xE-03 1.033xE-03 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low  
PVRL1=Low 
TUSC3=Low 

0.5846 0.3971 LTF=NC  
PLK2=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High 
 PVRL1=High 
TUSC3=NC 

2.098xE-03 9.83xE-04 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low 
 PVRL1=Low  
TUSC3=NC 

0.5829 0.3954 LTF=NC  
PLK2=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High  
PITX1=NC  
PVRL1=High 

2.098xE-03 9.831xE-04 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low 
 TLX2=Low  
PITX1=Low 
 PVRL1=Low 

0.5824 0.395 LTF=NC  
PLK2=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High  
PVRL1=High 

2.098xE-03 9.8322xE-
04 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low  
PITX1=NC  
PVRL1=Low  
IRAK4=NC 

0.5822 0.3948 LTF=NC  
PLK2=NC 
TGFB1I1=Low 
KRT7=High  
TLX2=High 
PVRL1=High 
TUSC3=Low 

2.098xE-03 9.833xE-04 

LTF=High 
 PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low  
PITX1=NC  
PVRL1=Low 

0.5822 0.3948 LTF=NC  
PLK2=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High  
PITX1=Low 
PVRL1=High 
IRAK4=High 

2.098xE-03 9.833xE-04 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low 
 PVRL1=Low 

0.5821 0.3947 LTF=NC  
PLK2=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High  
PITX1=High 
PVRL1=High 

2.098xE-03 9.833xE-04 

LTF=High 
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low  
PITX1=High  
PVRL1=Low 

0.5818 0.3943 LTF=NC 
PLK2=NC 
TGFB1I1=Low 
KRT7=Low  
TLX2=High  
PITX1=Low 
PVRL1=High 
IRAK4=Low 

2.099xE-03 9.834xE-04 

LTF=High  
PLK2=Low 
TGFB1I1=High 
KRT7=Low  
TLX2=Low  
PITX1=High 
 PVRL1=Low 
 IRAK4=NC 

0.5815 0.3941 LTF=NC  
TGFB1I1=Low 
KRT7=High  
TLX2=High  
PITX1=High 
PVRL1=High  
TUSC3=NC  
IRAK4=High 

2.106xE-03 1.039xE-03 

TGFB1I1=High 
TLX2=Low 
LTB4R=Low 

0.5682 0.3812 LTF=NC 
TGFB1I1=Low 
TLX2=High 

4.091xE-03 1.919xE-03 

TLX2=Low  
LTB4R=Low 

0.3937 0.2331 TGFB1I1=Low 
TLX2=High 

8.227xE-03 3.868xE-03 

TLX2=Low 0.2519 0.1361 TGFB1I1=Low 0.02431 0.0115 
TGFB1I1=High 0.2165 0.1145 TLX2=High 0.04341 0.0208 
LTF=High 0.1445 0.0733 LTF=Low 0.04696 0.0225 
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further research on the similar genes, in the future we can hope to combine the existing Entrez database, with 
our GEO studies to provide a full picture on the genetic component of Alzheimer's Disease.  
 
We can also try to combine our study, with the existing databases, such as Entrez, on Alzheimer's Disease, in 
order to help provide more insight into Alzheimer's Disease. In addition, we intend on collaborating with 
existing Alzheimer's Research Centers in order to strengthen our existing data. We will also further look into 
the relationships between the Entrez genes that were found to be similar to the genes identified from the 
analysis presented here to identify which genes play a crucial role in the development of Alzheimer's.  
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