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Abstract: To understand the physiology of a complex disease, such as mesotheliomas, it is necessary to learn 
how the genes that are involved in developing the disease interact with the environment. To this end, 
statistical methods that can detect these gene-environment interactions will help scientists in detecting causal 
relationships among genes. These predicted causal relationships among genes can then be later verified 
through actual laboratory experiments. 

In this paper, we have developed a novel causal discovery system that incorporates recent advances in 
Bayesian network search methods. We introduce a novel algorithm called Equivalence Checking Local 
Implicit latent variable scoring Method with Markov Chain Monte Carlo (EquLIM-MCMC) search algorithm 
that extends existing causal Bayesian network discovery algorithms, EquLIM and the Local Implicit latent 
variable scoring Method (LIM). Markov Chain Monte Carlo (MCMC) search has been shown to be very 
useful especially in analyzing datasets where the number of input variables greatly exceeds the number of 
cases that are collected (Friedman and Koller 2000; Hageman, Leduc et al. 2011). More and more datasets 
that are collected for gene expression studies have thousands of genes’ expression levels (input variables) that 
are measured from tens or hundreds of subjects (cases). Datasets collected in gene-environment interactions 
studies will show similar trends.  

We use LIM with MCMC (LIM-MCMC) and EquLIM-MCMC to analyze purely observational simulated 
gene expression datasets. To test these algorithms' abilities to detect causal relationships from realistic data, 
we generate datasets from a gene regulation pathway model of malignant mesothelioma formation proposed 
by an expert. Using the metrics of Area Under Receiver Operating Characteristic (AUROC) curve, Positive 
Predictive Value (PPV), and Shannon Entropy, we show that EquLIM-MCMC exhibit clear advantages over 
LIM-MCMC with causal relationship predictions. EquLIM-MCMC therefore improves over LIM-MCMC's 
ability in detecting causal relationships in gene networks and gene-environment interactions from presently 
available observational gene expression data. 
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1. INTRODUCTION  

Discovering causal relationships is the main focus of many scientific studies. While experimental studies 
(e.g., randomized control trials) are potentially very informative, they may be expensive and/or difficult to 
conduct the experiments (e.g., knocking out genes in mice). Thus, finding promising causal relationships 
from observational data − those from retrospective, prospective, case control, and/or longitudinal studies with 
no interventions − will be helpful. Especially, in gene expression studies, it will be helpful if we can discover 
gene-gene interactions, i.e., causal relationships among genes, from a study of that only perturbs the 
environment. Later the gene-gene interactions can be verified in wet laboratories through experimental 
studies. 
 
Causal modeling is an active field of research in which numerous advances have been made in areas that 
include Bayesian causal representation, model assessment and scoring, model search, and application to 
biological networks (Spirtes, Glymour et al. 2000; Yu, Smith et al. 2004; Werhli and Husmeier 2007; 
Grzegorczyk, Husmeier et al. 2008).  
 
The contribution of the current paper is to investigate promising causal discovery algorithms that identify 
causal relationships with only observational cases. We also compare the causal discovery algorithms.  We 
introduce a novel pairwise causal relationships scoring method — Equivalence Local Implicit latent variable 
scoring Method with Monte-Carlo Markov Chain search algorithm (EquLIM-MCMC) — to learn causal 
networks from observational data. EquLIM-MCMC is based on earlier work (Cooper and Yoo 1999; Yoo 
and Blitz 2009) by improving the search methods to discover promising causal relationships on observational 
data alone. However, this paper will give better understanding of the performance of EquLIM-MCMC by 
comparing it with LIM-MCMC. We investigate EquLIM-MCMC’s learning performance using area under 
receiver operating characteristics (AUROC) curves. This evaluation is a simulation study in which cases were 
generated from a gene network simulator. We report the result of our analysis in this paper. 

2. METHODS 

 
A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc 
represents probabilistic influence. A causal Bayesian network (or causal network for short) is a Bayesian 
network in which each arc is interpreted as a direct causal influence between a parent node (variable) and a 
child node, relative to the other nodes in the network (Pearl 1988). Using Bayesian Networks, we introduce 
six equivalence classes (E1 through E6) among the structures that are shown in Figure 1. Note that in Figure 
1, H is a latent variable and X and Y are nodes (variables). We use these causal hypotheses in EquLIM-
MCMC and LIM-MCMC. 
 
 
 
 
 

Figure 1. Six Local Causal Hypotheses 
 
Let E={E1, E2, E3, E4, E5, E6} and let Ei

XY denote the node pair X and Y with causal relationship Ei. 
 

2.1. Equivalence Local Implicit Latent Variable Scoring Method with MCMC 

 
In this section we introduce the Implicit Latent Variable Scoring (ILVS) method and then introduce a method 
called Local ILVS Method (LIM) that extends ILVS. At the end we introduce Equivalence LIM with MCMC 
(EquLIM-MCMC). 
 
Implicit Latent Variable Scoring (ILVS) Method. ILVS method can use data obtained from passive 
observation and from active experimental manipulation. Since much gene-expression data is of both types, 
the ILVS method is of particular relevance to work on discovery of gene-regulation pathways from gene-
expression data. ILVS scores each Ei in Figure 1 by only considering pairwise measured nodes. In earlier 
studies, ILVS was applied to simulated data (Yoo and Cooper 2001) and to yeast DNA microarray data (Yoo, 
Thorsson et al. 2002). ILVS is extended (called extILVS) to scores more than pairwise relationships. 
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Local ILVS Method (LIM) and Equivalence Local ILVS Method (EquLIM). Let Li
XY denote a set of 

local structures that includes Ei
XY and let LXY = ∪i Li

XY. LIM (Local ILVS method) calculates P(Ei
XY | D, K) by 

first, searching for the best Li
XY that fits the data; and second, using all unique Li

XY that were visited so far. 
Scores of the node pairs, calculated by extILVS, are used to guide the search for the best Li

XY. Finally, we 
estimate Equation Error! Bookmark not defined. by the following equation: 

P(E i
XY | D,K ) ≈

P(D,S | K )
S :E i

XY  is in T



P(D,T | K )
T


 (1) 

where T denotes all the structures generated in the search. Many heuristic methods have been used to search 
for the best structure that fits the data (Heckerman, Geiger et al. 1995). LIM use structure search as defined in 
the following steps: (Step 1) Construct a set V that represents strongly related variables with X and Y. Let W 
equal V ∪{X,Y}. We limit the number of variables in W to be less than k and use those variables to define the 
structures in LXY. Now any structure S∈ LXY can be denoted as S = {Ei

P| P∈{all pairs in W}}. (Step 2) We 
initialize S to a random structure by randomly choosing Ei

P for all P. (Step 3) For a given structure S, we 
score six different structures with extILVS by substituting Ei

P with one of the six hypotheses (from Figure 1) 
for all node pairs P in W; (Step 4) Select the Ej

P* that in Step 3 generated the structure with the highest score; 
update S by substituting Ej

P* for Ei
P in S and repeat Step 3 with the new S. Stop the search if there is no 

improvement in the structure score (it has reached a local maximum) and repeat from Step 2; otherwise, 
repeat from Step 3 with the original node pair P. We repeat the search from Step 2 for a user defined number 
of times. In the remainder of the paper, we use Local Structure Size (LSS) to refer the number of nodes in 
LXY.  
 
EquLIM extends LIM by scoring additional structures in (Step 3) of LIM: when we score six different 
structures with extILVS by substituting Ei

P with one of the six hypotheses (from Figure 1) for a node pair P 
in W, we additionally search for the reverse arc structure of each structure and score it (Yoo and Blitz 2009).  
 
LIM with Monte-Carlo Markov Chain Search (LIM-MCMC) and EquLIM with Monte-Carlo Markov 
Chain Search (EquLIM-MCMC).  Both LIM-MCMC and EquLIM-MCMC use ordering search (Friedman 
and Koller 2000) instead of greedy-hill climbing search for local structure search in (Step 2) and (Step 3) in 
LIM. For a given data set, the algorithms search for 1) the highest scoring Bayesian order, and 2) the pairwise 
associations among all variables.  
 
Instead of (Step 2) of LIM, LIM-MCMC and EquLIM-MCMC begin by generating a random order of the 
variables, i.e. { ଵܺ ≺ ܺଶ ≺ ⋯ ≺ ܺ௞ିଵ ≺ ܺ௞}, where ݇ is the total number of variables within the local 
structure. The score of the first order, defined as the probability of the data given the order, is then computed 
as follows: 
|ܦ)ܲ  ≺) = 	∏ ∑ )݁ݎ݋ܿݏ} ௜ܺ, ௎೔,≺௜∋ࢁ{(ܦ|ࢁ = ∏ ∑ ൜∏ Γ(ఈ೔ೕ)

Γ(ఈ೔ೕାே೔ೕ)∏ Γ(ఈ೔ೕೖାே೔ೕೖ)
Γ(ఈ೔ೕೖ)௥೔௞ୀଵ௤೔௝ୀଵ ൠࢁ∈௎೔,≺௜                 (2) 

 
where ௜ܷ,≺ represents the possible parent sets for node ௜ܺ; ݍ௜ the configurations of a given parent set ܷ for 
node ௜ܺ; ݎ௜ the possible values of node ௜ܺ; ܽ௜௝௞ the prior for node ௜ܺ given parent set ௝ܷ and value ݎ௞, with ߙ௜௝ = ∑ ௞(௜௝௞ߙ) ; ௜ܰ௝௞ the number of cases in ܦ which have value ݎ௞ for node ௜ܺ and configuration ݍ௝ for 
parent set ܷ, with ௜ܰ௝ = ∑ ( ௜ܰ௝௞)௞ ; and Γ(⋅) the Gamma function (Friedman and Koller 2000).   
 

Bins are maintained throughout the search that track the pairwise associations among all variables.  For two 
variables 	ܺ and 	ܻ in which ܺ precedes 	ܻ within the order, either the causal relationships {ܧଶ௑௒,  ହ௑௒} or theܧ
independent relationships {ܧଷ௑௒,  ଺௑௒} are possible.  The bins are updated with each order by placing theܧ
appropriate portion of the order score into the respective association bin. The portion placed into the causal 
and independent bins are calculated as follows: 	 ܲ(ܴ	| ≺) = ∑ ≻,ௌೃ∋ࡿ(ࡷ,ࡿ|ܦ)ܲ 		       (3) 
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where ܴ ∈ ,ଶ௑௒ܧ}} ,{ହ௑௒ܧ ,ଷ௑௒ܧ} ࡿ ;is a structure score (ࡷ,ࡿ|ܦ)ܲ ;{{଺௑௒ܧ ∈ ܵ൛ாమ೉ೊ,ாఱ೉ೊൟ,≺ represents the 

structures that satisfy the order and in which 	ܺ is a direct or indirect parent of 	ܻ; and ࡿ ∈ ܵ൛ாయ೉ೊ,ாల೉ೊൟ,≺ 

represents the structures that satisfy the order and in which 	ܺ and 	ܻ are independent.  

 

With appropriate assumptions, we can evaluate P(D|S,K) in Equation Error! Bookmark not defined. with 
the following equation (Cooper and Herskovits 1992; Heckerman, Geiger et al. 1995): 
 

∏
Γ

+Γ
∏ ∏

+Γ
Γ

=
== =

ii r

k ijk

ijkijkn

i

q

j ijij

ij N

N
KSDP

11 1 )(

)(

)(

)(
),|(

α
α

α
α

 (4) 

where ri is the number of states that Xi can have, qi denotes the number of joint states that the parents of Xi 
can have,  Nijk is the number of cases in D in which node Xi is passively observed to have state k when its 
parents have states as given by j, Γ is the gamma function, αijk and αij express parameters of the Dirichlet 
prior distributions, and  == ir

k ijkij NN 1
. We used the BDe metric (Heckerman, Geiger et al. 1995) with 

ii
ijk qr

1=α , which is a commonly used non-informative parameter prior for the BDe metric.  

 

For EquLIM-MCMC the score of the first reverse order is then computed, i.e. the score of the order {ܺ௞ ≺ܺ௞ିଵ ≺ ⋯ ≺ ܺଶ ≺ ଵܺ}.  The pairwise association bins are updated by adding the pairwise association scores 
of the first reverse order to the respective bins, which at this point in time contain only those of the first order. 
This step is not present in LIM-MCMC; the score is not calculated and the bins are not updated for the 
reverse order. The second order is then generated for both LIM-MCMC and EquLIM-MCMC by switching 
the positions of two randomly selected variables within the first order.  The second order score and its 
pairwise association scores are computed and the association bins are updated as previously described.  For 
EquLIM-MCMC, the order score of the second reverse order is found as well, and the association bins are 
updated once again. 

 

To determine whether or not a local move to the second order will be accepted, the order score of the first 
order is now compared to that of the second.  The local move is accepted with probability, ݉݅݊ ቂ1, ௉(஽|≺మ)௉(஽|≺భ)ቃ	(Friedman and Koller 2000).  The algorithms continue to generate new orders from the 

current order until the specified number of orders has been encountered.  For every order and in the case of 
EquLIM-MCMC, its reverse order, scores are computed and the pairwise association bins are updated.  With 
each new order, the probability of acceptance is found and a local move is accepted or denied, as previously 
described. 

 
Example Run of LIM-MCMC and EquLIM-MCMC. Let us assume once again that we have the five 
modeled nodes: U, V, X, Y, Z; and using a LSS of 3, choose ܹ = {ܺ, ܻ, ܼ}. A random ordering of the nodes 
in ܹ will be generated, for example {ܼ ≺ ܺ ≺ ܻ} and the score of the order will be computed. If we are 
interested in ܮ௑௒, note that X and Y can have the relationship {ܧଶ௑௒, ,ଷ௑௒ܧ} ହ௑௒} orܧ  ଺௑௒}. The association binsܧ
will be updated by adding the scores of the structures that  satisfy the order and in which {ܧଶ௑௒,  ହ௑௒} isܧ
present into the appropriate causal bin; and those in which {ܧଷ௑௒,   .଺௑௒} is present into the independent binܧ
For EquLIM-MCMC, the score of reverse order, i.e. {ܻ ≺ ܺ ≺ ܼ}, will then be computed and the bins will 
once again be updated. In this case, the scores of the structures that satisfy the order and in which {ܧଵ௑௒,  {ସ௑௒ܧ
are present will be used to update the causal bin. LIM-MCMC skips this step. The next step for both 
algorithms involves randomly switching the position of two nodes within the order, say Z and X for example, 
generating the new order {ܺ ≺ ܼ ≺ ܻ}. For EquLIM-MCMC, both the second order and its reverse order will 
be scored, with the association bins being updated for each. For LIM-MCMC, only the score of the second 
order will be calculated and will contribute to the association bins and not that of its reverse order. If the 
score of the second order is greater than that of the first, the local move will be accepted. The third order will 
then be generated from the second order, as the second was from the first. The second order can be accepted 
even if its score is not greater than the first, if the randomly generated probability is less than or equal to the 
acceptance probability. If the second order is not accepted, the third order will be generated from the first. 
These steps will continue until the specified number of orders  is visited. The association bins for {ܧଵ௑௒, ,ଶ௑௒ܧ} ,{ସ௑௒ܧ ,ଷ௑௒ܧ} ହ௑௒}, andܧ  .଺௑௒} will be  normalized as they were in EquLIMܧ

1045



Yoo and Wilcox, Evaluation of the causal Bayesian network search algorithms… 
 

3. EXPERIMENTAL METHODS 

 
If we know the real-world causal relationships among a set of variables of interest, then we could generate 
simulated observational datasets. Then we can use these datasets as input and let a causal learning method 
predict the causal structure and estimate the causal parameters that exist among the modeled variables. Since 
we know the true causal relationships, these predictions and estimates would then be compared to the true 
causal relationships. However, confident knowledge of underlying causal processes is relatively rare. That is 
why in this study of causal discovery from observational data, we used as a gold standard a causal model that 
was constructed by an expert biologist. In particular, we wanted to generate simulated gene expression data 
from known gene-gene interactions. We started with gene regulation pathways from a model of malignant 
mesothelioma formation  (Murthy and Testa 1999), which was used as the model input for a simulator built 
for producing high throughput data.  
 
We chose to evaluate LIM-MCMC and EquLIM-MCMC with the TETRAD network simulator, which is 
open source and runs on the Java platform. TETRAD models microarray-generated data and is able to 
incorporate measurement noise both from systematic and stochastic sources (Spirtes, Glymour et al. 2008).  
We generated data from the gene regulation pathways in the model of asbestos-related diseases formation 
simulator using plausible interactions among eight relatively well studied genes, i.e., IFNγ,  NFKB, SRA, 
CASP3, ICAM1, IL6, IL1, and TNFα, and then used this data in evaluating the learning method, LIM-MCMC 
and EquLIM-MCMC by comparing their predicted performance using Area Under Receiver Operating Curve 
(AUROC), Positive Predictive Value (PPV), and Shannon Entropy. 
 
We have implemented EquLIM-MCMC and LIM-MCMC in R (version 2.12.2). Since EquLIM-MCMC and 
LIM-MCMC are anytime algorithms, we have let EquLIM-MCMC and LIM-MCMC run for about 4 hours 
for each dataset. For each dataset, we performed five independent runs of EquLIM-MCMC and LIM-MCMC, 
thus the experiment ran for a total of 120 hours. We used LSS 5 for this experiment due to the fact that LSS 5 
ran for a reasonable time (about 4 hours) to produce stable results. 

4. RESULTS 

 
Here we show the average AUROC results of LIM-MCMC and EquLIM-MCMC in analyzing the five 
independence runs for each six datasets. To calculate the AUROC, we have calculated the AUROC under 
two prediction categories: causal, i.e., E1(E2), and independence, i.e., E3,  predictions. Since we know the true 
pairwise causal relationships between all eight genes in the simulator, we used all 28 pairs of genes to 
calculate whether LIM-MCMC, and EquLIM-MCMC correctly predicted each relationship of the 28 pairs of 
genes. Also we provide average Causal Prediction Value Rate (CPVR) which calculates the proportion of 
correctly predicted causal relationships out of total causal relationships in analyzing the five independence 
runs for each six datasets. We calculate Independence Prediction Value Rate (IPVR) in a similar way. We 
also calculated Shannon Entropy using three hypothesis posterior probabilities, i.e., P(E1

XY | Di), P(E2
XY | Di), 

and P(E3
XY | Di), predictions for all node pairs X and Y that have causal relationships with dataset Di where i 

represents number of cases, i.e., i = 20, 50, 100, 500, 1000, or 2000. 
 
Table 1 shows that the causal predictions of EquLIM-MCMC outperform those of LIM-MCMC and 
EquLIM. It also shows that in most cases the independence AUROC averages of LIM-MCMC are better than 
those of EquLIM-MCMC. This is because EquLIM-MCMC emphasizes in searching for causal relationships 
not independence relationships. It is also interesting to see EquLIM-MCMC outperform LIM-MCMC with 
50 cases since most of the initial high throughput data studies (1) will have small numbers of cases (<100 
cases); (2) will be mostly observational data; and (3) will seek novel causal relationships.  
 
Table 2 shows there are no significant differences among LIM, EquLIM and EquLIM-MCMC in terms of 
CPVR and IPVR. However, EquLIM-MCMC better predicts both causal and independence as more data is 
added. It is also interesting to see that in most of the cases, LIM-MCMC predicts causal relationships with 
higher confidence, i.e., lower entropy. This is especially promising since most of the initial microarray 
studies are limited in terms of number of cases (microarray chips).  
 
Table 1. Causal and Independence Predictions of average AUROC of ten independent runs of LIM, EquLIM, 
and EquLIM-MCMC on six datasets, i.e., dataset with only observational data. Shaded columns represent 
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Independence Predictions Numbers in the parentheses are standard deviation. The results are shown for Local 
Structure Size of five. 
 

 Causal Prediction Independence 
Prediction 

Algorithm 
# of cases 

LIM-
MCMC 

EquLIM-
MCMC 

LIM-
MCMC 

EquLIM-
MCMC 

20 0.872 
(0) 

0.872 
(0) 

0.547 
(0) 

0.547 
(0) 

50 0.911 
(0.010) 

0.924 
(0.015) 

0.510 
(0.012) 

0.508 
(0.016) 

100 0.879 
(0.029) 

0.919 
(0.034) 

0.559 
(0.027) 

0.561 
(0.026) 

500 0.784 
(0.069) 

0.801 
(0.123) 

0.596 
(0.058) 

0.553 
(0.053) 

1,000 0.779 
(0.074) 

0.788 
(0.075) 

0.543 
(0.066) 

0.502 
(0.016) 

2,000 0.869 
(0.050) 

0.879 
(0.071) 

0.596 
(0.078) 

0.538 
(0.113) 

 
 

Table 2. The average Causal Predicted Value Rate (CPVR) and Independent Predicted Value Rate (IPVR) of 
ten independent runs of LIM, EquLIM, and EquLIM-MCMC on six datasets, i.e., dataset with only 
observational data. Numbers in the parentheses in CPVR column are IPVR. The average Shannon Entropy of 
Causal Prediction of ten independent runs of LIM, EquLIM, and EquLIM-MCMC on six datasets, i.e., 
dataset with only observational data. Numbers in the parentheses are standard deviation. The results are 
shown for Local Structure Size of five.  

 CPVR (IPVR) Shannon Entropy 

Algorithm 
# of cases 

LIM-
MCMC 

EquLIM-
MCMC 

LIM-
MCMC 

EquLIM-
MCMC 

20 0.167 
(0.300) 

0.167 
(0.300) 

0.428 
(0.049) 

0.428 
(0.049) 

50 0.178 
(0.140) 

0.100 
(0.160) 

0.403 
(0.054) 

0.410 
(0.053) 

100 0.367 
(0.160) 

0.278 
(0.060) 

0.364 
(0.089) 

0.382 
(0.080) 

500 0.467 
(0.220) 

0.500 
(0.180) 

0.219 
(0.128) 

0.233 
(0.125) 

1,000 0.611 
(0.080) 

0.622 
(0.140) 

0.130 
(0.136) 

0.165 
(0.127) 

2,000 0.556 
(0.060) 

0.567 
(0.100) 

0.169 
(0.137) 

0.173 
(0.137) 

 
We also compared EquLIM-MCMC and LIM-MCMC with global network search (Cooper and Herskovits 
1992; Heckerman, Geiger et al. 1995) using the same simulated data. The global network search results show 
high variance and unreliable causal and independence predictions compared to those of LIM–MCMC and 
EquLIM-MCMC. In conclusion, comparing the results in Table 1 and Table 2 with the global network search 
shows that LIM-MCMC and EquLIM-MCMC produces more reliable predictions in both causal and 
independent relationships. 

5. CONCLUSIONS AND FUTURE WORK 

 
In this paper we have described causal Bayesian networks structure search algorithm called LIM-MCMC and 
EquLIM-MCMC. We have generated simulation data that includes no perturbations of a gene network. Better 
causal prediction abilities can be achieved by perturbations of the gene network. However, with limited 
budget and time, it is also useful to have an analysis that can predict novel causal relationships from limited 
resources. We believe EquLIM-MCMC can be useful in such initial analysis of experiments with limited 
resources. We have also shown that EquLIM-MCMC predicts causal relationships better than LIM-MCMC 
using a dataset with only observational cases. 

1047



Yoo and Wilcox, Evaluation of the causal Bayesian network search algorithms… 
 

 
Extensions of this work include examining the synergy of case control data in conjunction with observational 
and experimental data (Cooper 2000), and modeling beyond pairwise causal relationships between the 
measured variables (Yoo and Cooper 2002). We plan to study the effect of larger LSS (> 5) and plan to apply 
EquLIM-MCMC to actual experimental datasets from different genomic studies. 
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