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Abstract: Models are increasingly being used to assess the performance of farming systems.  Computer 
modelling is a cost-effective way to study a wide range of factors and the only way to consider future 
scenarios.  In pastoral systems, it is important to account for urine patches deposited by grazing animals as 
they are a major source of nitrogen (N) leaching.  Explicitly accounting for urine depositions is very 
challenging because the introduced spatial and temporal variability may require thousands of simulations 
depending on the system modelled.  In this case the computing time becomes a significant limitation so there 
is a need for methods to reduce computing time of pastoral systems simulations. 

Here we present an approach that can be used in the APSIM modelling framework to account for the effects 
of urine patches in a simplified way.  Using a meta-model coded as an APSIM module, a fraction of the urine 
N deposited is removed from the simulation as direct urinary N leaching (Figure 1), the rest is retained in the 
simulation and is returned to the 
paddock evenly distributed as 
mineral N.  This approach allows 
the user to model the whole 
paddock with relatively simple 
simulations, enabling to study a 
wide range of scenarios faster 
while still appropriately 
considering the impacts of urine 
depositions.  

The proposed meta-model relates 
the fraction of N leached (fLEACH) 
from urine patches to 
environmental and management 
factors.  It was constructed using 
empirical functions derived from 
a comprehensive N leaching 
dataset, which was produced 
using simulations that explicitly described the urine patches.  We present in this paper the results using data 
from the Canterbury region of New Zealand. 

Stepwise regression and principal components analysis were used to identify the most important factors 
related to fLEACH and then empirical functions were fitted to the dataset using regression analysis.  This was 
performed in three steps to account for the major static factors (soil plant available water, urine N load, 
annual rainfall and day of urine deposition) and one step accounting for dynamic factors (average 
temperature on the week prior to urine depositions and soil moisture at the time of deposition). 

Most of the variation was accounted for by the static factors, and the improvement by using dynamic factors 
was barely significant.  This means that the meta-model lacks sensitivity to year-to-year variations, therefore 
it is better suited for long-term simulations.  However, overall agreement was good (R2=0.73), with little 
overall bias.  The approach is thus promising, capturing the effects from the largest drivers of N leaching 
while considerably reducing the simulation time. 

Keywords: Model simplification, heterogeneous excreta return, grazing systems modelling, APSIM model 
framework; 

Figure 1. Schematic of the procedure used to simulate the effect of 
urine patch on N leaching. 
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1. INTRODUCTION 

Nutrient losses from agricultural fields are deemed responsible for the increasing degradation of water quality 
in catchments dominated by farming (Elliott et al., 2005; Monaghan et al., 2005).  The diffuse nature of such 
losses makes them difficult to measure, which in turn complicates the identification of sources as well as 
management options to reduce the losses.  Computer simulations can be a cost-effective alternative for such 
analyses.  However, modelling complex pastoral systems can also become resource-constrained.  
Investigating long-term effects of changes in farm management may require running a very large number of 
simulations in order to account for the interactions and variations of management and environmental factors.  
This may result in thousands of simulations when using a full factorial approach.  Limiting the number of 
factors considered will reduce the number of simulations but may result in loss of information or accuracy, 
although quasi-random sampling techniques (Campolongo et al., 2007; Helton and Davis, 2003) can be used 
to minimize these losses.  The use of meta-models is another option to reduce the simulation time and thus 
widen the testing range (Adams, 2007; Kleijnen, 2001; Piñeros Garcet et al., 2006).  Meta-models are 
simplified versions of complex models, built based only on few statistically significant relationships.  
Although accuracy may be compromised for specific conditions, the overall predictions are improved by the 
gain of information due to the wider range of factors that can be considered.  Meta-models typically require 
less and simpler inputs compared to complex models and this can sometimes reduce uncertainties in 
modelling work at large spatial or temporal scales (e.g. Leterme et al., 2007; Young et al., 1996). 

In agricultural systems with grazing animals, typical in New Zealand, the return of nitrogen (N) via urine is 
the major source for N losses (Ball and Ryden, 1984; Di and Cameron, 2002; Haynes and Williams, 1993).  
Grazing ruminants collect N from the whole paddock and deposit it in patches which, for a typical dairy 
system, represent 2-3% of the area after one grazing day.  As a consequence the N load is far in excess of the 
plant’s nutrients needs.  Estimating N losses ignoring urine patches will incur in large errors as well as 
accumulate bias arising from the varying fate of urinary N deposited in different seasons (Hutchings et al., 
2007; Shepherd et al., 2011; Snow et al., 2009).  Incorporating urine patches into process-based models is not 
trivial.  The implicit complexity of grazing systems is amplified by the variability introduced by the urine 
patches, which varies in time through sequential grazings.  The computing costs of handling such spatial and 
temporal variability have limited modelling urine patches explicitly to a few studies (Hutchings et al., 2007; 
Snow et al., 2009).  Thus there is a need for methods to simplify the description of the effects of urine 
patches when modelling N losses in grazing farm systems. 

In this paper we present an approach to be used within the APSIM model framework which, in a simplified 
way, accounts for the effects of urine patches on N leaching.  This allows the simulation of the whole 
paddock with a much simpler description than would be required to otherwise explicitly consider each of the 
urine depositions generated each grazing.  To build our module, we have derived an empirical function based 
on meta-analyses of a comprehensive dataset produced by explicitly simulating urine patches using the 
process-based soil module SWIM.  For this paper results using environmental data from the Canterbury 
region in New Zealand is presented. 

2. MODULE DEVELOPMENT 

2.1. The APSIM framework 

The work described in this paper was developed using the APSIM (Agricultural Production Systems 
Simulator) modelling framework (Keating et al., 2003).  APSIM is a modular framework which is ideal for 
multi-party development.  Depending on the simulation type, the user can choose to use different modules, 
each one responsible for a part of the simulation (e.g. handling weather data, simulating the carbon and 
nitrogen cycle in the soil, etc.).  Custom-made modules can be used to add functionality or as an alternative 
to existing modules.  Modules particularly relevant to the work presented in here include SoilN (Probert et 
al., 1998) to simulate soil C and N transformation, and AgPasture (Li et al., 2010) for pasture growth and N 
uptake.  To simulate soil water and solute movement APSIM has two standard modules, SWIM (Huth et al., 
1996; Verburg et al., 1996) which uses a detailed approach that solves the numerical versions of the 
Richards’ and convection-dispersion equations, and the simpler SoilWat (Probert et al., 1998) which uses a 
layered tipping-bucket approach.  To describe the processes within a urine patch the SWIM module is 
preferred as it accounts for non-linear concentration-dependent processes ignored in SoilWat but which are 
important in the urine patches where N load can be very high (several times that of a fertilizer application for 
example).  However, SWIM requires more parameters than does SoilWat and the highly non-linear numerical 
equations in SWIM means that sub-daily time-steps must be used (this will depend on the non-linearity of the 
equation describing the soil properties) which considerably increases the computing time.  In addition the 
equations may fail to converge at any point in the simulation causing the simulation to fail.  The differences 
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Table 1.  Management and environmental factors 
varied in the two simulation runs used to develop 
the urinary N leaching dataset. 

Factor Run 1 Run 2 

Weather location 25 4 

Soil type 7 52 

Irrigation 2 (yes/no) 1 (yes) 

N load (kg N/ha) 300;600;1000 300;500;1000 

Deposition month 12 12 

Deposition year 
25 

(1980-2004) 
15 

(1989-2003) 

in parameterisation and computing costs explain why SoilWat is the preferred soil module for most 
simulations using APSIM. 

The APSIM model with the configuration used here has already been successfully used to describe results 
from experiments simulating urine deposition in both lysimeters and small plot experiments (Cichota et al., 
2010; Snow et al., 2011). 

2.2. The UrinePatch module concept 

To account for the effects of urine patches on the amount of N leached from grazed paddocks, a module was 
built using empirical functions derived from meta-analyses of an N leaching dataset.  The functions describe 
the relationships between several environmental factors and the fraction of the N deposited in urine patches 
that ultimately leaches.  This fraction leached (fLEACH) is defined as: 

݂ாு = ேಽಶಲಹ,ೆିேಽಶಲಹ,బேಽೀಲವ     (1) 

where NLEACH,U is the amount leached from a urine patch, NLEACH,0 is the leaching from the area without urine 
deposition, and NLOAD is the load of urine N deposited within the urine patch area.  All values are in kg N/ha, 
at 1.5m depth and over the three years after deposition that is assumed to be the maximum life-span of a 
urine patch.  The meta-model is composed of the set of functions describing fLEACH and has been coded as an 
APSIM module, called UrinePatch. 

During an APSIM simulation, after a grazing event, the amount of N ingested by the animals is partitioned 
into animal product and excreta (Figure 1).  The amount of urine is sent to the UrinePatch module where a 
fraction is removed, being output as urine N leaching.  The module also computes an estimate of N 
volatilisation.  The remaining fraction is then returned to the soil mineral pool and the simulation continues to 
the next grazing event (Figure 1). 

2.3. Developing the meta-model for fLEACH: 

Urinary N leaching dataset 

A comprehensive set of simulations was used to 
produce a dataset of N leaching from urine patches 
under a diverse range of management and 
environmental factors.  The dataset was built by 
combining the results from two simulation runs, each 
a factorial combination of weather data, soil type, 
irrigation, N load, and urine deposition time (Table 
1).  The seven different soils used in the first run 
were a subset of the fifty-two soils used in the 
second one.  Likewise, the four weather data 
locations of the second run are a sample from the 
twenty-five locations of the first run.  Both the 
weather and soil subsets were chosen to reflect the 
variation of the full data.  Weather data for the 25 
locations within the Canterbury plains in New 
Zealand were obtained using the Virtual Climate 
Stations from NIWA (Tait et al., 2006).  The fifty-two soils reflected the natural variability in the region.  
The parameters were derived based on the functional horizons approach (Webb, 2003) using data from the 
New Zealand Soils Database (Wilde, 2003).  For these simulations the SWIM module was employed. 

APSIM simulations were set using all combinations of the factors in Table 1.  Separate simulations were run 
for each urine deposition, which occurred on the 15th of each month and for each of the deposition years.  The 
pasture was managed as cut-and-carry (thus without temporal overlap of urine depositions).  The paddocks 
received 125 kg N/ha as urea fertiliser, in ten applications between August and May.  Irrigation was set using 
typical management for a centre-pivot irrigation system as is common in the region.  N leaching was summed 
for three years after the urine deposition to ensure all leaching from the urine was accounted for.  Parallel 
simulations ran without urine deposition to identify N leaching under the same conditions but without the 
urine patch. 
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Figure 2.  Simulated (symbols) and fitted (lines) values of fLEACH as function of total soil plant available 
water, for irrigated sites and two different urine N loads.  The dashed lines are the fit for non irrigated sites 
and are shown for comparison.  The error bars show one standard deviation of simulated fLEACH. 

 
Figure 3.  Simulated (symbols) and fitted (lines) values of the deviation of fLEACH as a function of average 
annual rainfall (a) and day of deposition (b) all for sites irrigated with an N load of 500 kg N/ha. The error 
bars represent one standard deviation. The dashed line in (b) is the fit for non-irrigated sites. 

Identifying the driving factors 

A comprehensive set of environmental factors was attached to the N leaching dataset to assist with the 
analyses.  These factors can be grouped into static factors, such as soil characteristics (bulk density, clay 
content, plant available water) and climate variables (annual rainfall, long-term average temperature, etc.), 
and dynamic factors, such as the soil moisture at the time of deposition, the amount of rainfall in the week 
prior to deposition, etc.  To identify the most important factors related to variation in fLEACH, the dataset was 
subjected to stepwise regression as well as principal component analysis.  The factors that showed most 
influence were chosen for building the empirical functions.  Discernment was used in cases where the results 
were unclear or contradictory. 

Deriving the empirical functions 

After identifying the major environmental and management factors, regression analysis was used to derive 
the functions relating the fraction of N leached from urine patches to the environmental variables.  
Appropriate functions were identified and fitted in a sequence of three steps with each subsequent step 
applied to the residuals from the previous step.  Thus the final value for fLEACH is the sum of these successive 
adjustments, each accounting for the effects of one or two variables. 

The first step accounted for the effects of urine N load and the plant available water in the soil.  A sigmoid 
function was used to relate fLEACH to plant available water (Figure 2) while both of its sills were related to the 
N load.  The next two steps considered the effect of average annual rainfall (Figure 3a) and the time of urine 
deposition (Figure 3b).  The later was also related to N load.  Note that these adjustments used the deviations 
of fLEACH, or residues, after the model fitting in step one.  All the fitting was done for irrigated and non-
irrigated sites separately.  These steps accounted for the primary static factors and encompassed most of the 
variation in fLEACH.  
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Finally the two most relevant dynamic factors were used to complete the description of fLEACH.  These were 
the average air temperature over the week prior to urine deposition and the soil water content (expressed as 
fraction of the plant available water) at the day of deposition (Figure 4).  The function used to fit this data 
used both factors together, as their effect was found to be correlated.  Again, for this adjustment the data from 
irrigated and non-irrigated sites were treated separately. 

 
Figure 4. Simulated (symbols) and fitted (lines) values of the deviation of fLEACH as a function of 
average temperature in the week prior to deposition.  Information is shown for two levels of soil 
moisture; 50% (blue symbols and red lines) and 100% (purple symbols and green lines) of plant 
available water.  Data is from patches of N load of 500 kg N/ha at irrigated sites. The error bars 
represent one standard deviation. The dashed lines show the fit for non-irrigated sites, for comparison. 

2.4. Evaluation of the meta-model fit 

The meta-model, built with the functions fitted in the four steps describe above, showed good descriptive 
power when compared to the simulated N leaching dataset.  Despite the large variability that characterises N 
leaching from soils, the value of R2 for all available data points was 0.729.  Also, there was very little overall 
bias, with average of calculated fLEACH equal to 25.5 compared to 26.0 of the original data.  Computing long-
term averages across sites or soil types resulted in very good agreement for both dryland and irrigated sites 
(Figure 5).  However, the year-to-year variability is underestimated by the empirical model, which means that 
the sensitivity of the module to variations in specific years is limited.  This lack of sensitivity is due to the 
limited improvement in the fit of fLEACH in the final step, when the dynamic factors were included (Figure 4).  
Capturing more of the effect of dynamic factors will be the biggest challenge to further develop this 
approach. 

3. CONCLUSIONS AND RECOMMENDATIONS 

The meta-model presented in this paper showed promising results.  Estimation of the likely fraction of N 
leached from urine patches agreed reasonably well with the results from the simulations explicitly describing 
urine depositions.  The module developed allows a user to run APSIM simulations at a paddock scale and 
still capture the effects of urine patches.  This enables users to run a wide range of scenarios in a feasible 
time-frame.  The proposed module does not fully capture all of the variability in N leaching but does 
represent the impacts of the major management and environmental factors with little bias.  The empirical 
model does not provide any information about the timing of N leaching through a particular depth in the soil.  
Therefore, the approach used here is suitable for simulations of long-term trends rather than mimicking short-
term experiments.  The loss in sensitivity of the empirical model may be well compensated by the extra 
factors or scenarios that can be tested using a less time consuming simulation setting. 

Urine patches cannot be neglected when describing farm systems with a grazing component.  The 
heterogeneity introduced by these patches is large and thus methods to simplify its description are needed.  
The meta-modelling approaches have been shown to be useful in several areas and certainly are promising in 
describing the effects of N leaching from urine patches.  For the proposed module, further evaluation is 
required to determine its descriptive power at the paddock and farm levels.  The usefulness of empirical 
functions is commonly restricted to the scope of the data they are derived from, thus the functions presented 
here also need to be tested for different environmental conditions, if they are to be used in other regions. 
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Figure 5.  Comparison between the fLEACH simulated by APSIM-SWIM with explicit urine patch deposition 
and calculated using the empirical functions developed for the UrinePatch module.  Each dot represents the 
average across years for each soil type and month of deposition. The 1:1 line is also shown. 
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