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Abstract: The FEniCS Project is an open source finite element framework for solving PDEs. The advan-
tage of this framework is a tight connection between the mathematical model, the associated variational
problem and the numerical algorithm. This connection is achieved by the form language UFL and the
user interface DOLFIN.

Using the Python version of the DOLFIN interface, we implement numerical schemes for solving quasi-
static Stokes equations with Newtonian and non-Newtonian viscosity accompanied by the heat and the
compositional field transer equations in two dimensions. We use a mixed finite element formulation
for the incompressible Stokes equations with an independent approximation of velocity and pressure.
The advection-diffusion equations for the heat and the composition transfer, with similar mathematical
properties, are discretized using an upwinded discontinuous Galerkin formulation, because of the discon-
tinuities and sharp gradients found in these equations. To minimize numerical dispersion error for the
compositional field, the discontinuous method is reinforced by a filtering algorithm.

We consider two numerical examples: firstly an isothermal and isoviscous gravitational instability; and
secondly thermal convection with a non-Newtonian viscosity. Gravitational instability problem has ap-
plications in the modelling of the sinking of solidified magma leading to the formation of basalt layers,
while a non-Newtonian power law viscosity is used in studies of mantle convection.

Results presented demonstrate functionality of the FEniCS project and its most impressive feature: com-
paratively easy way of experimenting with mathematical description of natural processes.
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1 INTRODUCTION

Despite a quite long history of geoscience, there are still a lot of processes which are not well understood.
One typical example is mantle. How is it structured? Are there significant phase changes in the mantle?
What is the viscosity of the mantle and how is it radially distributed? Are compositional differences
in the mantle significant enough to drive convection? Is mantle convection layered? Computational
techniques were just beginning to allow simulations to tackle these questions (for example, see Hager
and O’Connell, 1981; Christensen, 1984), but after three decades significant questions still remain: is
there a compositionally different layer of mantle covering the core-mantle boundary? Are the majority of
plumes from the core-mantle boundary or from shallower depths? Is there water-enriched mantle at the
670 km discontinuity? What is the thickness and viscosity of the asthenosphere? Are there substantial
lateral variations in the mantle? And so on (Ricard, 2009 for a fuller discussion).

Taking into consideration time and spatial scale of the geological processes, it is obvious that numerical
modelling together with further comparison of obtained results with observation is an extremely important
tool for solving these fundamental problems. However, it is also important to ensure flexibility of software
in order to test different hypotheses.

The FEniCS Project is a tool incorporating such properties. It is a collection of open source software
which aims to the automated solution of differential equations. FEniCS is based on the finite element
method with highly efficient code, and allows a large amount of finite element discretizations. Moreover,
its structure presumes that user specifies governing equations and discretization’s scheme, while solving
of error-prone tasks is automated and, consequently, hidden. User’s interface is provided by a problem
solving environment DOLFIN with both a C++ and a Python interfaces; it additionally ensures effective
dealing with the auxiliary tasks (creating of meshes, specification of linear algebra solvers). The Unified
Form Language (UFL), one of the components of FEniCS, is designed for the specification of finite ele-
ment spaces and variational forms. An essential feature of the UFL is its close connection to mathematical
representation. Further details about the FEniCS Project might be found in Logg et al. (2011).

Over long timescales, the mantle behaves like a viscous fluid, driven instantaneously by buoyancy differ-
ences caused by temperature or compositional variations. The negligible effect of inertia (Ricard, 2009)
means the flow lacks a ’memory’ of its previous state and is completely and instantly determined by the
instantaneous buoyancy field. The mathematical description of such a fluid is given by the Stokes equa-
tions for the conservation of mass and momentum and by advection-diffusion equations for the transfer
of heat and composition.

In the paper we consider two problems. The first one is an isothermal gravitational instability with a
thin dense layer; it has applications in the modeling of the sinking of solidified magma leading to the
formation of basalt layers (Sobouti et al., 2001). The second problem is that of mantle convection with a
non-Newtonian power law viscosity, thought to be important in modelling the mantle’s rheology (Ranalli,
1995).

2 SOLUTION PROCEDURE WITH FENICS

In this section we describe work-flow of solving procedure with FEniCS. Starting from mathematical
formulation, we proceed with discretization schemes and aspects of implementation.

2.1 Mathematical Statement

We consider two-dimensional equations in the Cartesian coordinate systemOx1x2. Taking into consider-
ation the Boussinesq approximation, Stoke’s flow of an incompressible fluid is governed by the following
system of non-dimensional equations (Shubert et al., 2001):

−∇·σ −∇ p = (RbΦ−RaT ) e, (1)

∇·u = 0, (2)

∂T

∂t
+ u · ∇T = ∇·∇T, (3)
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∂Φ

∂t
+ u · ∇Φ = ∇· (kC ∇Φ) . (4)

Here, equations (1), (2), (3) describe conservation of momentum, mass and energy, respectively. Instead
of pure advective equation, transport of chemical compositional filed Φ is modeled by (4) which includes
diffusive term with a very small Lewis number kC . This substitution is convenient for numerical treatment
and allows to take into consideration chemical diffusivity presented in real systems (van Keken et al.,
1997). In the equations above, u is the velocity vector, p is the pressure, σ denotes the deviatoric stress
tensor, T is the temperature field, e is the unit vector in the direction of gravity (opposite to x2).

The Rayleigh numbers Ra and Rb are defined as

Ra =
α∆T∆ρgb3

κη0
, Rb =

∆ρgb3

κη0
, (5)

where α is the thermal expansion, ∆T is the temperature contrast, ∆ρ is the density difference between
layers, g is the acceleration of gravity, b is the height of the domain, κ is thermal diffusivity, and η0 is a
reference viscosity. In general, these numbers measure the proneness of the fluid to convect due to thermal
(Ra) and compositional (Rb) variations. The choice of scaling parameter η0 is strongly connected with
the constitutive equations. In the case of Newtonian viscosity where stress depends linearly on the strain
rate ε̇ as

σ = 2ηε̇(u), ε̇(u) =
1

2

(
∇u+ (∇u)

T
)
, (6)

η0 is mostly equal to the viscosity on the surface. For the non-Newtonian rheology with power n, the ref-
erence viscosity reads as η0 = A1/nb(1+n)/nκ(1−n)/n, whereA is a given constant, and non-dimensional
viscosity is defined through the second strain rate invariant ε by the expression (Christensen and Yuen,
1989)

η = ε(1−n)/n, ε =

√
1

2
ε̇ : ε̇. (7)

The problems are solved in the rectangular region Ω with the length L and the height H .

Isothermal gravitational (or Rayleigh-Taylor) instability is modeled by the equations (1), (2), (4) with
Ra = 0, Rb = 105, L/H = 1 and Hd = 0.2H , where Hd is the height of the dense layer. For this
problem we consider Newtonian viscosity which is equal for both layers, that is η = 1 in (6). Free-slip
and impermeable boundary conditions are prescribed on all boundaries together with no influx for the
composition. Initial disturbance between layers is caused by the adding of dense layer 0.08H × 0.08H
on the left side of the interface (Figure 1a).

Thermal convection problem is considered for the non-Newtonian viscosity (7) with n = 3 and is gov-
erned by the equations (1), (2), (3), where Ra = 103. Simulation is performed in the region with
L/H = 2.5. No-slip boundary conditions are defined on the top and bottom boundaries, while free-slip
and impermeability are specified on the sides. Temperature is equal to zero on the top and to one on the
bottom, and no heat flux condition on the left and right boundaries. As the initial conditions, we used the
solution of the steady-state problem with free-slip and impermeable boundary conditions for the whole
region. This solution is obtained by successive iterations starting from initial guesses for the temperature
field

Ts = (H − x2)/H + 0.05 cos(πx1/L) sin(πx2/H),

and the temperature- and depth-dependent viscosity

ηs = exp (− ln(16384)Ts + ln(64)(H − x2)/H) .

2.2 Discretization Schemes

Numerical treatment of the equations (1) - (4) includes both spatial and temporal discretizations. Spatial
discretization of the equations is performed using continuous and discontinuous schemes of the finite
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element method applied to the correspondent variational forms, while for the solving of time-dependent
problems the backward Euler method is used. Further we describe implemented numerical schemes for
the incompressible Stokes equation and the steady-state advection-diffusion equation with dominated
advective term.

First, let us assume that Ω is partitioned by the triangular mesh Th = {K}. For the discretization
of equations (1) - (2), we implemented a mixed variational formulation with the lowest order Taylor-
Hood elements (Taylor and Hood, 1973), that is quadratic vector fields for the velocities and continuous
piecewise linears for pressure both over Th. Solving for the advection-dominated advection-diffusion
equations (3), (4) in the steady-state case is performed by a discontinuous Galerkin method with an
upwinded numerical flux di Pietro et al. (2006); Arnold (1982) on a finite element space of discontinuous
piecewise linears over the tessellation Th. Further details might be found in Vynnytska et al. (2011).

2.3 Solving Algorithms and Some Implementation Details

The problems are solved using splitting scheme. We seek first the solution of the incompressible Stokes
equation, and then solve for the solution of time-dependent equation using the backward Euler method.
For the Rayleigh-Taylor instability, we apply additionally filtering algorithm for the composition Φ aimed
for the correction of numerical dispersion (Lenardic and Kaula, 1993). New time step is computed to
satisfy CFL condition, which relates spatial and temporal discretizations.

The solving algorithms are implemented using the Python user interface to DOLFIN version 0.9.10. The
solutions are obtained on built-in meshes. They are formed by partition of the region on n×m rectangles
and further dividing of each rectangle on two (using only one diagonal) of four (using both diagonals)
triangles.

To demonstrate particularities and possibilities of FEniCS, let us consider the implemented Picard iter-
ation algorithm for solving the equations (1)- (2) with the viscosity (7) which is presented in Listing 1.
As input parameters, among other mesh, boundary conditions and solutions from the previous time step
are given. The procedure starts from specification of finite elements spaces V, Q, W and definition of
basis (both test and trial) and other functions. In the iteration loop, we define viscosity η using mid-point
solution from two previous iterations for the velocity field u. A mixed variational formulation is defined
by the form F ((u, p), (v, q)). The last step is assembling and solving of the system of linear equations.
The solution is obtained using the default solver.

Listing 1: Solving algorithm for the incompressible Stokes equation with non-Newtonian viscosity
def momentum solve ( nR , g , Ra , mesh , bcs , T pr , u p r ) :

”””
I n p u t p a r a m e t e r s :

nR − power i n v i s c o s i t y e x p r e s s i o n ; g − a c c e l e r a t i o n o f g r a v i t y
Ra − R a y l e i g h number ; bcs − boundary c o n d i t i o n s ; mesh
T pr , u p r − t e m p e r a t u r e and v e l o c i t i e s from p r e v i o u s t i m e s t e p

”””

# d e f i n i t i o n o f f i n i t e e l e m e n t s p a c e s
V = V e c t o r F u n c t i o n S p a c e ( mesh , ”CG” , 2 )
Q = F u n c t i o n S p a c e ( mesh , ”CG” , 1 )
W = V ∗ Q

( u , p ) = T r i a l F u n c t i o n s (W) ; ( v , q ) = T e s t F u n c t i o n s (W) # b a s i s f u n c t i o n s

v e l o c i t y p r e s s u r e = F u n c t i o n (W)
u mid = F u n c t i o n (V ) ; u1 = F u n c t i o n (V)
u1 . a s s i g n ( u p r ) # a s s i g n p r e v i o u s s o l u t i o n
H = Ra∗T pr

e r = 1 . 0 ; eps = 1e−4 # q u a n t i t i e s which are used i n s t o p p i n g c r i t e r i o n
# s t a r t P i c ar d ’ s i t e r a t i o n
whi le e r > eps :
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a b c d

Figure 1: Gravitational instability: a) initial setup, t = 0; b) sinking plume on the left wall, t = 0.00127;
c) sinking plume on the right wall, t = 0.00369; d) final stage, t = 0.0531

u mid = 0 . 5∗ ( u p r + u1 ) # d e f i n e mid−p o i n t s o l u t i o n
s r i = s q r t ( 0 . 5∗ i n n e r ( s t r a i n ( u mid ) , s t r a i n ( u mid ) ) ) # I I SR i n v a r i a n t
e t a =( s r i ∗∗ ( (1 .0 −nR ) / nR ) ) # compute e t a

# D e f i n e e q u a t i o n F ( ( u , p ) , ( v , q ) ) = 0
F = ( 2 . 0∗ e t a ∗ i n n e r ( s t r a i n ( u ) , s t r a i n ( v ) ) ∗ dx + d i v ( v )∗ p∗dx

+ d i v ( u )∗ q∗dx + H∗ i n n e r ( g , v )∗ dx )
a = l h s ( F ) ; L = r h s ( F ) # g e a t h e r l e f t − and r i g h t −hand s i d e s o f F

(A, b ) = a s s e m b l e s y s t e m ( a , L , bcs ) # a s s e b b l e s y s t e m
s o l v e (A, v e l o c i t y p r e s s u r e . v e c t o r ( ) , b ) # s o l v e s y s t e m

u p r . a s s i g n ( u1 ) # u pd a t e p r e v i o u s s o l u t i o n
u1 . a s s i g n ( v e l o c i t y p r e s s u r e . s p l i t ( ) [ 0 ] ) # a s s i g n new s o l u t i o n
e r = abs ( norm ( u p r ) − norm ( u1 ) ) / norm ( u p r ) # compute r e l a t i v e e r r o r

re turn u1 # r e t u r n s o l u t i o n

3 NUMERICAL RESULTS

3.1 Gravitational Instability

For this problem, we set kC = 10−8 to make influence of diffusion negligible, Φ is a step function which
is equal to one for the dense layer and to zero for the light layer. The triangular mesh is constructed
by the diagonal from the lower left corner to the upper right corner on the initial rectangular partition
100 × 70, that is the mesh is denser in x1 direction. Simulation demonstrates the following scenario.
Distortion of the interface causes gradients in pressure and formation of the plume on left side (Figure
1b) which moves through the light layer. On the further stages pressure gradient leads to the formation
of smaller sinking plume structure near the right wall (Figure 1c); we stop the simulation when almost
steady regime is reached (Figure 1d).

3.2 Thermal Convection

This problem is solved on the mesh 100× 40 with crossed diagonals. We followed Christensen and Yuen
(1989) in initial setup in order to compare results and verify numerical method. In particular, in Chris-
tensen and Yuen (1989) for this problem is obtained breakup of a long convection cell and subsequent
transition to three similar and almost steady convective cells. Our scheme led us to the same conclusion.
The simulation results for temperature, velocity, and viscosity fields are shown in Figure 2.
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Temperature field Velocity field

Viscosity field

Figure 2: Thermal convection with non-Newtonian viscosity: three convective cells, t = 0.32941

4 CONCLUSIONS

This paper demonstrates an applicability of general-purpose finite element library FEniCS for solving
geoscientific problems. Using functionality of the FEniCS project, first of all the form language UFL,
we implemented variational problems describing evolution of an incompressible Stokes flow induced by
compositional or temperature variations. Numerical results show the ability of discontinuous Galerkin
scheme to track interface between chemically distinct layers. However, in the case of very thin layer
special-purpose tracer-based approaches should be applied. At the same time, DOLFIN allows to com-
bine FEniCS functionality and additional code for specific purposes. Solving for the problem with non-
Newtonian viscosity is implemented using the Picard iteration method, however FEniCS offers the possi-
bility to use non-linear solvers. Despite problems considered are two-dimensional, FEniCS works in the
same way in three dimensional case; it provides also parallel simulations.
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