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Abstract: Most geoscientific research programmes benefit from three-dimensional (3D) representations of 
geology. Various elements of a geological target can be visualised, analysed and quantified to better understand 
the spatial properties of prospective terranes. For example, current technologies are able to produce useful 
measures that describe proven or prospective ore deposits. Essential information such as host and source rock 
proximity relationships can be estimated and analysed simultaneously with the location and prevalence of partic-
ular geological features (such as faults, lithologies, folds, resource estimates and mineral distribution) to generate 
3D prospectivity maps that help to guide exploration activity. 

The geological elements of a 3D model are defined by a suite of data including field observations, geophysical 
interpretation and the prevailing tectonic evolution hypothesis. Field data (consisting of orientation measure-
ments and lithological observations) are often supported by interpreted geophysics in covered terranes. In addi-
tion, the tectonic evolution hypothesis describing the timing of important geological events also has a large in-
fluence on the stratigraphic column, fault networks and interactions between the modelled elements. All of these 
input data are prone to error and uncertainty and may produce a model that does not adequately represent actual 
geology. In particular, a heavy reliance on geophysical interpretation introduces a high risk of ambiguity as it is 
difficult to explicitly identify lithological and structural fabric orientations. Subsequently much effort is made to 
remove error and uncertainty from the inputs to produce a single, optimised model that represents the geology in 
a useful and reliable manner. 

Removing error from the input data is difficult and, in some cases, almost impossible to perform. There is a risk 
that a reduced set of measurements that produces a model best representing the geology can be removed in the 
process. Our philosophy is to examine model reliability by simulating the error in input data. The data is subject-
ed to uncertainty simulation prior to model input and involves varying strike and dip observations that determine 
modelled geological geometries. The subsequent sets of varied strike and dip observations are used to calculate 
multiple geological 3D models. The result is a suite of models that represent the range of possibilities offered by 
the input data set. 

We present this technique using a part of the palaeoproterozoic Ashanti Greenstone Belt, southwestern Ghana 
and the Gippsland Basin, southeastern Australia in a comparative case study. Geological knowledge in these re-
gions can benefit from this technique as it produces an interesting set of ‘what-if’ scenarios, expanding our un-
derstanding of the interaction between geological elements considered important for gold mineralisation (Ashan-
ti Greenstone Belt) or oil and gas prospectivity (Gippsland Basin). We perform analysis on the model suites us-
ing Principal Component Analysis (PCA) to determine the important features and characteristics. The most-
different models or ‘end-members’ of a model suite can be identified given a particular geological attribute, be it 
depth (deep or shallow) or volumes (large and small) of a particular stratigraphic unit, fault relationships or mag-
nitude of deformation. These attributes, or ‘geodiversity’ metrics, can provide invaluable information to the geo-
scientist. The geodiversity metrics are then integrated into a combined study to answer questions regarding geo-
logical possibilities in the region providing a comprehensive understanding of geology in the respective geologi-
cal terranes.  
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 Azimuth Dip New 
Azimuth 

New 
Dip 

Formation 5 315 60 320 58 

Formation 4 35 60 38 65 

Formation 2 240 80 245 85 

Formation 2 105 75 107 70 

…     
Table 1. Sample of original geological orientation 
measurements (columns to the left) that have been 
subjected to uncertainty simulation (columns to the 
right). 

 
Figure 1. Comparison of models that have been calculated using data subjected to 
uncertainty simulation. Note areas of significant difference circled in black. The first 
row of models are surface maps with input strike and dip measurements, the second are 
3D block model representations of the above surface maps. 

1. INTRODUCTION 

Geological three-dimensional (3D) models are employed to aid various areas of geoscientific research. The quality of the 
model relies upon the correct location and relationships between various geological elements (Jessell et al., 2010). There-
fore the usefulness of the 3D model relies heavily on the ability of the input data (including geophysical information, 
field geology observations; well/drill logs and elevation or depth data) to provide sufficient information to locate and 
describe these geological elements. Unfortunately input data is subjected to varying degrees of error and uncertainty in 
collection or processing that can adversely affect the accuracy of the model (Thore et al., 2002). This approach follows 
advances made by Jessell et al. (2010), Lindsay et al. (2010), Wellmann et al. (2010) and Wellmann and Regenauer-Lieb 
(2011) toward perturbation of input orientation data, misfit functions, multiple model generation, calculation and analysis 
of multiple models, visualisation and quantification of model uncertainty, model quality assessment and visualisation of 
information entropy. Similar to these previous studies, removal of error or uncertainty from data prior to input is not per-
formed. Instead multiple models are calculated in an attempt to understand the range of geological possibilities that exist 
when uncertainty has been taken into consideration. The result is a model suite that contains models displaying typical 
geological geometries and models that provide extreme geological geometries, defining a boundary to the geological pos-
sibilities that can be generated from the input data set. 

In much the same way many animal species at a particular location can described using biodiversity metrics, multiple 
geological models within a model suite can be described using a set of geological diversity, or ‘geodiversity’, metrics. 
The use of the term geodiversity in the modelling context of this study should not be confused with its use in conserva-
tion that, while related, describes the diversity of processes, morphology and mineralogy of the earth. Fundamental ques-
tions that should be answered to describe model suite geodiversity are: (1) are these models different; (2) how are these 
models different and (3) what modelling implications can be drawn from the information that geodiversity metrics pro-
vide? An additional aim of this exploratory study is to determine whether there is a universal metric that will always ap-
propriately describe the geodiversity, regardless of the input data set parameters or geological terrane being modelled. 

2. MULTIPLE MODEL GENERATION 

A model suite is created by calculating many models from a data set that has been subjected to uncertainty simulation. 
Each model is created using an implicit geological modelling application, 3D Geomodeller, that uses the potential field 
method to calculate geological interfaces as implicit surfaces (Lajaunie et al., 1997). The geological interfaces represent 
the contact between different geological formations from which geo-
logical formations can be interpolated (see Calcagno et al. 2008 for 
additional information). It is required that three different sources of 
geological information are specified before model calculation can take 
place: 

1. A stratigraphic column. This describes the temporal relationships 
between the geological formations being modelled. 

2. The location of geological contacts for each stratigraphic group 
must be known at some locations. 

3. Orientation measurements in the form of strike and dip measure-
ments that describing the orientation of the geological interface. 

The uncertainty simulation varies the orientation measurements from 
the data set ±5 degrees (Table 1), a reasonable amount of variation that 
may be observed between measurements taken by different geologists, 
especially in weathered or highly deformed 
terranes. Each data set perturbation is then 
used to recalculate the model potential field to 
accommodate the new, varied input data. The 
results of uncertainty simulation can be seen in 
the synthetic model (Figure 1). There is poten-
tial to generate millions of models in this man-
ner. For the purposes of this study we have 
generated 100 new models for a total of 101 
(including the original model), providing 
enough opportunity to generate a suite of dif-
ferent and varied model geometries to make a 
reasonable comparison of the possibilities 
within the model suite. 

Each model is then converted to a voxet – a set 
of volumetric pixels (voxels) that represent the 
model as a grid in 3D space. The voxet param-
eters are stored in Universal Transverse Merca-

649



Lindsay et al. 2011, Categorising features of geological terranes to enhance model space exploration of geological possibility 

tor (UTM) co-ordinates so that distances (including depth) and location can be measured in metres and related back to 
the real-world area of interest. The property of each cell is an integer representing a stratigraphic unit (‘stratigraphic ID’) 
in relative position according to the stratigraphic column. A stratigraphic ID value of ‘1’ represents the basement unit of 
the model, whereas a stratigraphic ID value of ‘2’ represents the unit overlying the basement and so on.  

3. GEODIVERSITY METRICS 

The geodiversity seen within the model suite is clear when comparing the models in Figure 1. The different degrees of 
displacement along faults (3D block models) and the geometry of rock outcrop (surface maps) can be easily identified. 
But often the differences are more subtle than can be seen when using purely visual comparative techniques. This is the 
case when studying the difference in curvature of a particular geological contact. In addition some model properties, such 
as the volume or depth ranges of a particular geological unit of interest, require quantitative analytical methods to pro-
vide useful information to the operator. Visual comparison is also inefficient for model comparison in suites with more 
than a few members. A set of mathematical analysis techniques have been developed to automatically assess model suite 
geodiversity that can be used independent of geological terrane or model suite size. The following metrics have been 
developed to appropriately assess the geodiversity contained within a model suite. These metrics are used to characterize 
the geology of model allowing relevant comparisons to be made. 

Formation depth and volume 
The shallowest and deepest extents of each stratigraphic unit can be determined from each model. This type of infor-
mation can be of interest to both traditional geoscientific industries, such as oil, gas and minerals exploration (depth of 
reservoir or deposit) and groundwater and environmental management (depth of aquifer), but also to emerging energy 
industries such as geothermal and coalbed methane exploration. Shallowest extent of a formation is calculated by deter-
mining the shallowest voxel in the formation under study and vice versa for the deepest extent. It is also possible to cal-
culate the volume of each stratigraphic unit within each model of the suite. Particular units can be delineated and exam-
ined for economic or scientific research interest to answer questions regarding geological possibilities. Volumes are de-
termined by a count of formation voxels 

Average mean curvature 
Calculating the average mean curvature of a geological contact can provide information that describes the degree of geo-
logical interface deformation. Curvature is determined by calculating the magnitude of principal curvatures k1, a section 
plane through the fold displaying the maximum curvature, and k2, a plane perpendicular to k1, displaying the minimum 
curvature. Mean curvature (M) is the arithmetic average of k1 and k2. Gaussian curvature (G) is the product of k1 and k2. A 
positive G value indicates that both principal curvatures have the same sign (the surface resembles a dome, or if inverted, 
a bowl or basin) and a negative value indicates the principal curvatures have different signs (the surface resembles a sad-
dle or inverted saddle). Curvature calculations can locate and determine the magnitude of curvature (or folding) observed 
within a contact. Further analysis of mean curvature and Gaussian curvature in combination can reveal folding directions 
along two perpendicular axes, allowing the identification of fold geometry (i.e. antiformal synforms or synformal anti-
forms) (Lisle and Toimil, 2007).  

Neighbourhood relationships 
Neighbour relationships can describe the manner in which different stratigraphic units are juxtaposed. Two types of rela-
tionship can be described, ‘short-distance’ and ‘long-distance’. Only short-distance metrics are employed at this stage, 
though long-distance metrics can be added as their method becomes more refined. Short-distance relationships are those 
that concern cells directly adjacent to the cell under study. In this study two short-distance relationships are examined. 
Firstly, the union between two formations, or in geological terms, the contact between two units can be determined. The 
proportion of the model consisting of differing contact relationships can be calculated. The surface area of the contact 
between various stratigraphic units can be identified individually and their respective proportions calculated. This infor-
mation can be beneficial to mineral exploration studies, where the contact between particular units can lead to the identi-
fication of a potential mineral resource. For example, an explorer may be interested in under what conditions and which 
model displays the largest surface-area between a psammitic and psammopelitic unit within a model being used to target 
a Broken Hill-type deposit. 

Secondly, if the stratigraphic units directly adjacent to a given cell can be identified, then the number of different adjacent 
stratigraphic units can be determined. This number can represent the degree of geological complexity at that point (Fig-
ure 2). For example, if a cell had one type of stratigraphic unit adjacent, then it could be assumed that the cell is sur-
rounded by the same stratigraphic unit. This would indicate that the cell is located in an area of low complexity, possibly 
in the middle of a particular formation. Complexity increases as the number of adjacent stratigraphic units increases, so 
that a value of two may indicate that the cell is near or on a geological contact between two different units and three indi-
cates that the cell is near or on a triple-junction between units. Individual cells can give information about the complexity 
of a given point, but a mean value for a given stratigraphic unit can also be calculated representing the geological com-
plexity of that unit as a whole. This complexity information can be used to determine which stratigraphic units within the 
model may be more difficult to target in drilling programs. 
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Figure 2. A complex short-distance 
neighbour relationships. Note the 
voxel under study, represented by the 
circled sphere (unit ‘1’) is surround-
ed by three different stratigraphic 
units (units ‘1’, ‘2’ and ‘3’). 

Neighbourhood relationships are calculated with a k-nearest neighbour algorithm (k-
NN). This method classifies objects based on training areas within the model and finds 
the closest points in terms of Euclidean distance (Bremner et al., 2005; Friedman et al., 
1977). The distances determined by this technique are used to constrain which voxels 
are counted as neighbours. In the case of the short-distance metrics it follows that only 
the shortest distances (a six neighbour relationship) are included in determination of 
the geological relationships. 

4. PRINCIPAL COMPONENT ANALYSIS 

Can the variability of a particular geodiversity metric describe the geometrical varia-
tion between models within the model suite? The measured attributes of the chosen 
metric can be used to identify which models are ‘outliers’ or display a large difference 
from the more common and similar examples within a model suite. This similarity de-
fines a ‘barycentre’ of the model suite in terms of the metric under examination. Fur-
ther, and perhaps more interestingly, the models that display a large degree of differ-
ence from the barycentre can also be identified identifying model suite ‘end-members’. 
This knowledge helps to define the limits of geological possibility given the input dataset, method of model calculation 
and geodiversity metrics employed. 

This study employs multiple geodiversity metrics. While expert opinion may hypothesise that co-variance exists between 
each geodiversity metric, it is required that rigorous analysis be performed to confirm this hypothesis. For example, the 
differences seen between models in terms of formation volume and formation depth are likely not to be related and their 
relationship should come under examination to better understand the characteristics of the model suite. Subsequently the 
problem has become multidimensional and to adequately analyse the complexities of the model suite multivariate analy-
sis must be used. Principal Component Analysis (PCA) has been chosen to perform this task. PCA is a technique that 
allows complex data interactions to be displayed by orthogonal transformation of the data and re-organisation in terms of 
relevance to the attribute being analysed. The original, potentially correlated variables (in this case the geodiversity met-
rics) are converted into uncorrelated variables or principal components. The conversion of data is performed so that the 
first principal component displays the greatest variance, with each component thereafter displaying progressively lower 
degrees of variance. The ultimate aim is to contain as the highest degree of variance within the first principal component. 
This means that each component contains a combination of variability across all the metrics, rather than just measuring 
the variability of just one. This way the combined effect on variability of all the metrics can be measured, and also allows 
metrics that use different unit of measurement to be included. Each further component contains the next highest degree of 
remaining variance, so long as it is uncorrelated to preceding components (Jolliffe, 2002). By combining metric variabil-
ity into principal components a common cause (or causes) behind that variability can be identified. 

The principal components are calculated in the following order: i) statistics (mean, subtract deviations from mean, covar-
iance matrix); ii) sorted eigenvectors and eigenvalues of the covariance matrix in descending order; iii) contributions of 
eigenvectors to eigenvalues; iv) determination of basis vectors; v) projection of z-score-converted original dataset onto 
basis vectors. PCA has been chosen instead of other multivariate techniques such as Factor Analysis or Nonnegative ma-
trix Factorization due the larger range visualisation methods that are possible. PCA was performed in MATLAB, primari-
ly with the ‘princomp’ function. The coefficients, or ‘loadings’, of the linear combinations of the metrics that were using 
to calculate the principal component data are obtained from this function (Jolliffe, 2002). Plotting loadings as vectors can 
show the contribution in variability a particular metric has toward the principal components (see Figures 5 and 6). Ho-
telling’s T2 statistic is also determined from the MATLAB ‘princomp’ function. It allows the determination of the multi-
variate distance of each model from the centre of the dataset, aiding identification of model suite outliers and barycentre 
examples (Hotelling, 1931; Krzanowski, 1995). 

A two-stage PCA method is employed. The first stage determines which individual formations describe variability within 
each metric. Each stratigraphic unit is analysed for the formation depth and volume metrics and the short-distance neigh-
bourhood relationships. The stratigraphic unit from each metric best describing observed variability within the model 
suite is identified by plotting the loadings. Those contributing the most to the first two principal components are retained 
for the second stage. Each metric representative identified in the first stage is then collated into a combined matrix with 
other geodiversity metrics compared with the others in a second stage. For example, if lithology X and lithology Y were 
seen to contribute most to the first principal component and second component variability respectively, both would be 
combined with other representative lithologies (say lithology A and B from the formation depth geodiversity metric) into 
a single matrix that combines all metrics together. By performing PCA on the combined matrix it is possible to 1) deter-
mine which metric best describes model suite variability overall and 2) which models represent the outliers and barycen-
tre of the model suite. 

5. GIPPSLAND BASIN AND ASHANTI GREENSTONE BELT, SOUTHWESTERN GHANA 

Two geological data sets have been used to build case study models representing two different geological terranes (off-
shore basin versus craton) to discover whether each data set produces different results from the PCA. The first data set 
represents the Gippsland Basin, southeastern Australia. A variety of data types have been used when building this model 
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including hard rock observations, geophysical interpretation (2D seismic, aeromagnetic and gravity data), bathymetry 
information and well logs. The second data set represents the southern part of the Ashanti Greenstone Belt located in 
southwestern Ghana. The input data types are similar, except seismic and bathymetry information have been replaced 
with radiometric and digital elevation model (DEM) data respectively.  

The Mesozoic to Cenozoic Gippsland Basin is a mature oil and gas field located in southeastern Australia that also hosts 
brown coal deposits and is prospective for CO2 sequestration (Cook, 2006; Rahmanian et al., 1990) (Figure 3). Ordovi-
cian formations comprise the basement of the model and the Oligocene to Pliocene Seaspray and Angler comprise the 
cover sequences. The Paleocene to Late Miocene Latrobe Group is primary target for oil and gas and includes the Cobia, 
Golden Beach and Emperor Subgroups (Bernecker et al., 2001). The basin is cross-cut by a number of transfer and nor-
mal faults, with the model bounded by the Cape Howe Fault in the west, the Lake Wellington and Combienbar faults in 
the north and the Cape Everard Fault in the south. The initial assumption was made that either the volume or depth of 
formation metrics would have the greatest influence on model suite variability as the model has layer-cake stratigraphy 
typical of a basin. 

Granitoid intrusions, the Birimian Supergroup mafic volcanics and sediments and the Tarkwaian Group sediments com-
prise the basement of western Ghana (Figure 4). The Birimian Supergroup comprises alternating ‘belts’ of northeast strik-
ing mafic volcanics and ‘basins’ of shales, cherts and turbiditic sediments separated by major faults (Leube et al., 1990). 
Fault-bounded Tarkwaian rocks appear as slices adjacent to or unconformably overlying Birimian volcanics (Davis et al., 
1994). Gold prospective regions include the contact between the Palaeoproterozoic Birimian Supergroup and Tarkwaian 
Group (Allibone et al., 2002; Klemd et al., 1993). In contrast to the Gippsland basin model, the assumption was made 
that the average mean curvature metric would have the greatest influence on model suite variability given that the model 
represents a more heavily deformed cratonic geological terrane.  

  
Figure 3. Location of the Gippsland Basin study area. Figure 4. Location of the Ashanti Greenstone Belt study area. 

6. RESULTS 

Figure 5a and 5b show loading and score plots for short-distance neighbourhood relationships representing adjacent strat-
igraphic complexity. Each vector represents a stratigraphic unit. The direction and length of the vector indicates how each 
stratigraphic unit contributes to the two principal components in the plot. For example, Figure 5a shows that stratigraphic 
units fourteen, ten and fifteen contribute the most to the first principal component (x axis), whereas thirteen contributes 
the most toward the second principal component (y axis). Figure 5b shows that variability between models is best  

Figure 5. Loading (vectors) and score plots showing contributions to model suite variability: SD neighbour relationships representing adjacent strati-
graphic complexity. (a) Gippland Basin model suite study shows that for this geodiversity metric stratigraphic units fourteen, ten and fifteen plot along 
the x axis, indicating they are influential in terms of describing model suite variability. Unit thirteen is less influential as it plots along the y axis. (b) 
Ashanti Greenstone Belt model suite study shows that unit four is influential and six also, but to a lesser degree. Points represent a model and their 
distance from 0,0 represents distance from the barycentre. 
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Table 2. Comparison of top three end-member models and top three barycentre models calculated 
from the Gippsland Basin and Ashanti Greenstone Belt model suites (n = 101) in terms of SD neigh-
bour adjacent stratigraphic complexity and the combined geodiversity metric results are compared. 
Hotelling’s T2 was used to determine these rankings. 

 SD neighbour adjacent stratigraphic 
complexity 

Combined geodiversity metrics 

 Gippsland Basin Ashanti GS Belt Gippsland Basin Ashanti GS Belt 

E
nd

-
m

em
be

r 
m

od
el

s 

Model 2 Model 61 Model 10 Model 13 

Model 16 Model 52 Model 30 Model 59 

Model 66 Model 78 Model 38 Model 82 

B
ar

yc
en

-
tr

e 
m

od
el

s Model 7 Model 96 Model 20 Model 84 

Model 37 Model 50 Model 61 Model 50 

Model 75 Model 40 Model 95 Model 1 

     

explained by stratigraphic unit four (first principal component) and, to a lesser degree, stratigraphic unit six (second prin-
cipal component). These units are then selected and combined with units from other geodiversity metrics for the second 
stage combined PCA to determine which models represent the barycentre of the model suite (models represented by 
points close to 0,0) and those that represent the outliers (points plotted towards the extremities of the chart). Figure 6 
shows the results from a combined geodiversity metric PCA study. All geodiversity metrics defined in Section 3 have 
been input into calculations in order to determine which models represent ‘end-members’ or outlier representations of the 
model suite and those that represent the barycentre. A comparison of the end-member models and the barycentre models 
is shown in Table 2. 

7. DISCUSSION AND CONCLUSIONS 

Most of the metrics used in this study could be of some use to various geoscientific studies. The method described can 
illuminate otherwise difficult to obtain geometrical information across multiple models and allow comparison with other 
model suites. End-member and barycentre models have been identified for both Gippsland Basin and Ashanti Greenstone 
Belt model suites. Table 2 reveals that the SD neighbour adjacent stratigraphic complexity metric PCA shows different 

end-member and barycentre models 
to the combined PCA. In addition 
Figure 6a shows that the most in-
fluential metric for the Gippsland 
Basin is the volume of stratigraphic 
unit three, while the contact surface 
area for the contact between units 
one and three is the most influential 
for the Ashanti model suite. That 
the volume of unit three (top of the 
Ordovician basement) in the Gipps-
land Basin model is the most influ-
ential has implications for model 
uncertainty. As unit three underlies 
most of the stratigraphy in a basin 
environment, any geometrical per-
turbations of this unit will have 
subsequent effect on the volume of 

the formation, which in turn could affect the spatial location of the the overlying units, including the oil and gas prospec-
tive Latrobe Group units. The contact between the units one and three for the Ashanti model suite are also important. This 
is the contact between the Early Birimian and the base of the Tarkwaian basin. This relationship contains an unconformi-
ty and defines the geometry of the Tarkwaian basin as whole, but also is a gold prospective geological contact. Any geo-
metrical perturbations to this contact will have a large impact on variability between models in the suite, as identified by 
PCA, but also would be of interest to mineral explorers in the region. 

These results can aid further revisions of the model. Measurements, observations and data types that are effective at ana-
lysing the volume of Gippsland Basin stratigraphic unit three (for example seismic tomography or sections) or the con-
tact between units one and three in the Ashanti model  (drill core or aeromagnetic interpretation) can be pursued. If these 
aspects of the model can be better constrained, the possibility of high variability between models may be less, which sub-

Figure 6. Loading and score plots showing the contribution to model suite geodiversity for each metric defined in Section 3. The vector labels indicate 
the metric and the selected unit i.e. (a) shows that ‘Vol L3’ (unit three volume) is the most useful in terms of describing model variability for the Gipps-
land Basin model suite as it plots along the x axis, whereas (b) shows that ‘Contact L1-L3’ (the surface area of the contact between units one and three) 
best explains the variability of the Ashanti Greenstone Belt model suite. Points represent a model and their distance from 0,0 represents distance from the 
barycentre. Additional metrics are - Deep L’X’: deepest occurrence of unit X; Shallow: shallowest occurrence of unit; SDN: Short-distance neighbour 
adjacent stratigraphic complexity; km: mean average curvature; kg: mean Gaussian curvature (see Lisle and Toimil, 2007 for detailed description of 
curvature metrics). Points represent a model and their distance from 0,0 represents distance from the barycentre. 
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sequently reduces overall model uncertainty. The different geodiversity metrics identified between model suites also sug-
gests that using a number of metrics is appropriate to encompass the variety of model geometries presented when a data 
set has subjected to uncertainty simulation. The hypothesis that a universal metric exists can be rejected in terms of the 
data sets and metrics used in this study, but the concept of a universal metric has not been completely examined, as many 
more exist than those analysed here. 

Model suites can be analysed by PCA to quickly determine end-member and barycentre models for both individual geo-
diversity metrics and in combination. The relative contribution of different stratigraphic units within individual metrics 
can be assessed to find their contribution to model suite variability which can potentially answer questions relating to the 
specific aims of a geoscientific study. The location of areas of interest can be easily located using these metrics as the 
data is georeferenced within the voxet. Different metrics can also be identified as contributing more or less to model suite 
variability. Additional metrics can be easily added into combined PCA analyses as they are developed. This information 
can allow the operator to choose which metrics to utilise more effectively inspect the breadth of geological possibility. 
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