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Abstract: This paper present a novel algorithm for monotone front propagation of anisotropic nature.
In several examples the new algorithm is shown to be fast and able to solve a general class of front
propagation problems. The algorithm is inspired by Huygens’ principle in that the front is described
using a list of nodes that are used as source points to evolve the front. Nodes affected by the source points
are either directly used as source points or temporarily paused, depending on their solution value and the
average solution value of all source points. This feature makes the algorithm semi-ordered. Still, nodes
may be used as source points several times, making the algorithm iterative of nature. Together, these
features create the Semi-Ordered Fast Iterative (SOFI) method.

Unlike other iterative algorithms the performance does not depend strongly on the domain geometry or
variations in front velocity. Instead, the performance seems closer to that of the more stable Ordered
Upwind Methods. We compare the computational time between the SOFI and Fast Marching method
for an increasing grid on two isotropic examples. The computational time of the SOFI method is shorter
than that of the Fast Marching method, especially on large grids. Ordered Upwind Methods have a
computational scaling of O(N log N), where N is the total number of unknown nodes. The log N factor
stems from the sorting needed for the front propagation. The SOFI method needs no sorting, and our
numerical experiments indicate that it is of order O(N).

On isotropic examples the SOFI method solutions are identical to those from the Fast Marching method
assuming the same stencil is used in both methods. On problems with anisotropy the solutions are iden-
tical to those from the Fast Sweeping method when the same stencils are used. The SOFI method has
many similarities with two recently introduced iterative methods, the Fast Iterative method and the Two
Queue method. The Fast Iterative method lacks the semi-ordering, and its performance is therefore very
problem dependent. The Two Queue method also pauses nodes to get a partially ordered method, but is
only applicable to isotropic problem formulations.

Stencils of different forms can be used with minor modifications of the algorithm. We present examples
where the stencil uses only edge connected nodes, and also when diagonal nodes are included in the
stencil. The SOFI method can use any consistent local wave approximation (stencil), and may therefore
keep the constant velocity assumption to a small area unlike the Ordered Upwind Methods which often
assume that the velocity profile is constant in a larger neighbourhood. In geoscience, the simulation of
an expanding front is used for the modelling of structural folds. Modelling of geological folding is a
key component of the shared earth model the Compound Earth Simulator, developed by the oil and gas
company Statoil. Non-parallel folds are modelled using anisotropic front propagation, where the velocity
of the front depends on the direction the front is moving. Three different classes of folds are illustrated in
our example section, all created using the SOFI method.

Keywords: Monotone front propagation, geological folding, static Hamilton-Jacobi equations, the
Eikonal equation.
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1 INTRODUCTION

The simulation of an expanding front is needed in many scientific applications. In the Earth sciences
fast solutions are used in forward modelling of seismic data (Rawlinson and Sambridge (2004)), to de-
scribe complex folding structures in geological systems (Hjelle and Petersen (2011)), and in reservoir
simulations (Berre et al. (2005)).There are many applications in other fields discussed by Sethian (1999),
including grid generation, optimal path planning, and computer visualisation applications.

Statoil is currently developing a shared earth model; the Compound Earth Simulator or for short Com-
pound. The Compound framework models an earth segment by combining drill measurements and seis-
mic data with human intuition. A user can restore faults and folded structures interactively, and further-
more simulate the geological evolution by placing geological events and processes along a timeline. A
key component in Compound is the modelling of geological folds as described in Hjelle and Petersen
(2011). To obtain a user-friendly and interactive application the simulations must be fast and accurate.
Both speed and accuracy can be increased by using an alternative stencil formulation that include nodes
diagonal to the point being updated (Gillberg et al. (2011)).

2 BACKGROUND

In this section we briefly discuss a mathematical framework for monotone front propagation, and two
concepts of importance to our algorithm design.

Front Propagation. The expanding front is described by its (first) time of arrival, 7', to all points in a
domain € from the start position I'. A general mathematical framework for the time-of-arrival is given
by static Hamilton-Jacobi equations of the form

H(z,VT)=0, T(x) =0Vx €T, ey

where H is convex in VT'. The solution 7'(z) can be thought of as the distance from x to I, as measured
with a metric defined by H. Solutions to the Eikonal equation H(z,VT) = VT - VT — ﬁ with
F =1, is the minimal Euclidian distance from z to .

Causality. What lies ahead of a moving front does not affect the past movements of the front. This
property is known as the causality principle. For monotone front propagation causality states that smaller
values do not depend on larger ones. Causality implies that the solution should be constructed in an
increasing order, an approach heavily exploited by several algorithms, know as front tracking methods.

On a discrete setting the causality principle cannot be directly employed, since larger valued nodes may
affect the solution of smaller ones. This is due to the way the front is modelled in the update step, that is
the numerical stencils. All stencils use some sort of interpolation of values between nodes. However, for
an upwind-stencil we can formulate the following discrete causality principle. The value at node D, Tp,
is to be approximated using solution values to nodes of the set {U7, ..., U,}.

Observation 1. The value at D might depend on the values of {Uy, ..., U,} only if{ min }TU,; < Tp.

15--.Un

If minTy,;_, , = Tp then node D is upwind (behind) all of Uy, ..., Uy, and the front will first pass
node D and later nodes Uy, ...,U,. If U; < Tp for some ¢, then node D is downwind of U;, and the
time the front reaches D may depend on the time the front first reached U;, and therefore {U7, ..., Up,}.

Observation 1 is a weak, but very general, discrete formulation of the causality principle that is valid for
any upwind finite difference stencil for front propagation. With a given stencil and propagation formula-
tion it is often possible to come up with a stricter discrete causality formulation, as done for the Eikonal
equation in Gillberg et al. (2011).

Huygens’ principle. Huygens’ principle is formulated as follows by Alton (2010):

All points on a wavefront serve as point sources of secondary wavelets. After a short time the new position
of the wavefront will be that of the surface tangent to those secondary wavelets.

Instead of following the entire front continuously, one can look at the front as described by a set of source
points. The combined front (envelope) of all source points gives the new front position. In short, the
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method presented in section 4 is a discrete version of Huygens’ principle, which traces the front using the
mean solution value of the discrete source points.

3 FRONT PROPAGATION ALGORITHMS

The algorithms that exploit the causality principle the most are the front tracking methods, such as the Fast
Marching and Expanding Wavefront Methods, presented by Sethian (1999) and Qin et al. (1992). Front
tracking methods approximate the front, and use the point on the front with minimal value as a source
point to further evolve the front, before considering the point as passed by the front. Since a node is only
passed one time, these algorithms are called one-pass methods. In order to know which node is to be
passed next, an ordered data structure is needed. Therefore, parallel implementations of these algorithms
are difficult to achieve. The method can be made faster by passing a set of nodes close to the wave front
simultaneously as suggested by Kim (2001). Extensions to anisotropic propagation are known as Ordered
Upwind Methods. These methods are complicated, some must be simplified to be implemented, and need
prior knowledge of the degree of anisotropy in the problem, see for instance Cristiani (2009); Vladimirsky
(2003); Alton (2010). The Ordered Upwind methods use a large neighbourhood when updating a node.
By doing so, an underlying assumption is that the velocity is constant in the larger neighbourhood, which
is not the case for problems with local anisotropy.

Another approach is to sweep the front in a set of predefined directions with Gauss-Seidel iterations, see
Qian et al. (2007), or by assuming the front will have a spherical-like shape as done by Vidale (1988).
These iterative methods are sensitive to domain geometry and variations in the velocity, and are therefore
often slower than front tracking methods. Complex domain geometries and velocity variations may cause
the solution dependencies, the characteristic curves, to twist and bend and many iterations are often
needed. Recently, two iterative algorithms that make partial use of the causality principle have been
presented, the Fast Iterative method by Jeong and Whitaker (2008), and the Single/Two Queue methods
by Bak et al. (2010). The Fast Iterative and Single Queue methods have an active list (queue) of nodes
to expand the wave everywhere simultaneously, and their performance is highly problem dependent.
The Two Queue method enforces a better use of causality, and is therefore less problem dependent than
the Fast Iterative and Single Queue methods. The Queue methods need fewer operations than the Fast
Iterative method, but they are only capable to solve isotropic front propagation problems.

4 THE SEMI-ORDERED FAST ITERATIVE METHOD

Let Qp denote the set of nodes on which we wish to compute the time of arrival, and assume that the
initial distance is known at the nodes I'p C 2p. Initially, we assume that the front does not reach any
nodes that are not initialised, T'(z) = oo V& € Qp \ I'p. The current front is described by a list, aL,
containing source points (active nodes). In the initialisation step, all initialised nodes are added to aL.
We also have a list of nodes who are ahead of the source points, pL, that initially is empty but later will
contain paused nodes, that is nodes that later will be used as source points.

As in Huygens’ interpretation of a moving front, all nodes in aL are used as source points to evolve
the front. Using observation 1, close nodes potentially downwind of a source point are updated using
stencils where the source point is included. In the observation, Uy, ..., U, are all nodes in the stencil,
and D is the close node. The definition of close nodes depends on the stencil form. For example if the
stencil only uses edge connected nodes (bottom stencil of figure 1(b)) only edge connected neighbours to
the source point need to be updated. If the stencil uses both edge and diagonal neighbours on a regular
grid (top stencil figure 1(b)), the diagonal nodes of the source point may also need to be updated. These
corresponding stencil forms will be referred to as a diagonal and edge stencil respectively. The diagonal
stencil is the more accurate since it makes use of a more local wave approximation, see Gillberg et al.
(2011) for details.

We construct the solution in a semi-ordered fashion using a parameter av. Assume that node z,, receives
anew solution value that is smaller than the old value, t < T'(x,,). If in addition ¢ < av then x,, is added
to the end of aL, and used as a source point. If instead ¢ > av, we postpone its function as a source by
adding z,, to pL. The approach of using two lists was first suggested by Glover et al. (1985). Let my, be
the average solution value of all nodes added to pL during iteration k¥ — 1 of the aL list. By choosing
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# Main algorithm
Initialise T', aL, empty pL, and set av = 0.
while a1. not empty do
forall z € aL do
Remove z from aL
for all Nodes x,,, that are possibly downwind of = do
Update x,, using stencils including x to t,,0,,
if T'(z,) > thew > av then
Add =z, to pL
elseif 7'(x,,) > t, ey and t,,c,, < av then
Add z,, to aL.
end if
T(I'n) = min (T(I'n)rtnﬁw)
end for
end for
if al is empty then
Switch(aL, pL),
Update av
end if
end while

(a) SOFI pseudo code (b) Diagonal and
edge stencil forms

Figure 1: (a) Pseudo code for the SOFI method. (b) Two stencil forms, where the arrow points to the
node being updated. Top shows a diagonal stencil, and bottom an edge stencil.

av = my we enforce causality with no prior information of the problem. The method may benefit by
relaxing the semi-ordering by choosing av = 1.3my, — 0.3my_1'. The relaxation is beneficial if an edge
stencil is used but not noticeably when a diagonal stencil is used. When there are no source points left,
no nodes in {2 can get a lower arrival time. Any upwind stencil with a proper upwind condition can be
applied if the source point neighbours are correctly defined. Figure 1(a) shows pseudo code for SOFI.

5 NUMERICAL VERIFICATION

If the stencil uses diagonally connected nodes, nodes diagonal of the source point should be updated.
However, when not mentioned otherwise, the semi-ordering of SOFI assures a correct solution with only
edge connected updates on the examples in this section. In case of highly irregular speed functions, or
strong anisotropy, the diagonal update should be included to get solutions with the smallest errors.

5.1 Computational order and the Hamilton-Jacobi-Bellman equation

In order to illustrate the computational order, graphs in figures 2(a) and 2(b) show CPU times for an
increasing number of nodes for both the Fast Marching and SOFI methods applied to two isotropic prob-
lems. Both methods has been implemented in C++, compiled with O3 optimization, and uses identical
stencil formulations. Solid (dashed) lines are CPU times for the SOFI method with a diagonal (edge) sten-
cil, and dotted (dash-dotted) lines are CPU times for the Fast Marching method with a diagonal (edge)
stencil. All computational times are averages of 5 runs on a MacBookPro with a 2.66 GHz Intel Core 2
Duo processor and 2 x 2 GB 1067 MHz DDR3 ram memory. The two equations which are solved are

IVT||=1,  T(50,50) =0, 0<w=z,y<100 (2)
VT

100\/sin y2 sin 2 + (1.01 + cos x cos y)*

=1, T(x,0) =0, 0<z,9y<10. 3)

The characteristic curves of (2) are straight lines, but they are curved for (3) which indicates that iterative
methods perform badly. For a given stencil the SOFI method is 2.4-4.8 times faster depending on grid

L Approximately 50% of the nodes are activated with no relaxation. Bak et al. (2010) suggest that 65-75% are optimal.
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(a) CPU time, distance to centered point (b) CPU time, complex isotropic speed (c) Five S-isocurves to (4)

Figure 2: (a) and (b) show the computational time in seconds for the total number of nodes for (2) and (3).
Solid (dashed) lines are CPU times for the SOFI method with a diagonal (edge) stencil, dotted (dash-dot)
lines are CPU times for the Fast Marching method with a diagonal (edge) stencil. Figure (c) shows the
5-isocurve for five solutions with different anisotropic directions of (4).

sizes for (2). For the more complex problem of (3), the computations of the velocity are very time con-
suming, and the SOFI method is therefore only 1.1-2.2 times faster. Notice that the diagonal stencil is
faster for both methods, supported by Gillberg et al. (2011). The Fast Marching method has a computa-
tional scaling of O (N log V), visible especially on the simple distance computation. There is no sorting
in the SOFI method, and every source point has a constant number of neighbour nodes. Together with
figures 2(a) and 2(b), these observations implies a computational scaling of O (V) for the SOFI method.
The SOFI method solution is identical to the Fast Marching solution for both equations.

We counted the average number of stencil solves per node for these isotropic problems on a grid of
560x560 nodes. For equation (2) the SOFI method needs 1.996 updates for both stencil types, precisely
the same number as the Fast Marching method. The Two Queue method need 1.626, and the Single
Queue method only 1, update per node (Bak et al. (2010)). The performance for problem (3) is very
different. Here the SOFI method with a diagonal stencil use 2.047, and with an edge stencil 2.906 stencil
solves. The Fast Marching method need on average 1.998 updates for both stencil types. The Single
Queue method need 186.863, and the Two Queue method with dynamic queue cutoff 2.312 updates per
node. A significant drawback for the Two Queue methods is that the average speed is needed for the
cutoff implementation. The average speed can be both costly and difficult to compute.

Our first anisotropic example is of Hamilton Jacobi Bellman type, describing the distance from a point in
a tilted plane, z = ¢y + coy. The problem is formulated by

. (VT(z)-—u)
— =1, 0<z,y<1, T(0.5,05) =0 4
mfgg%(l—k(c-u)z)l/? » 0=says1, T(05,05) =0, @
where B2 is the set of all unit vectors. On a discrete setting the causality principle cannot be directly
employed, since larger valued nodes may affect the solution of smaller ones. Therefore (4) cannot be
solved by a Fast Marching approach (Cristiani (2009); Vladimirsky (2003)).

Figure 2(c) shows the 5-isocurve for solutions to (4) with ¢ = \/ﬁ(sin %”, cos %) fori = 1,2,3,4,5,
created on a grid of 101x101 nodes. The used stencils are of diagonal form. In the update step the
stencil including the smaller diagonal node is first solved, and thereafter the stencil including the larger
diagonal node is considered. The average number of updates per node if only edge neighbours are updated
are 5.206 per node. If also nodes diagonal from the source point are included the average number of
operations increases to 7.415. The degree of anisotropy, as described in Vladimirsky (2003), for this
problem is /1 + [¢[2 = v/11. If we increase the degree of anisotropy to v/21, diagonal nodes from the
source should be updated to get a solution with the smallest errors. The number of operations per node
then increases to 10.952. The solution of these examples are identical to that of the Fast Sweeping method
if the same stencils are used, and numerical convergence estimates for similar anisotropic equations are
presented in Qian et al. (2007).
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(a) Fold of class 1A (b) Fold of class 1B (parallel) (c) Fold of class 1C

Figure 3: Three modelled folds of different classes, from left class 1A, 1B, 1C after Ramsay’s classifi-
cation system, as explained in Hjelle and Petersen (2011). The initial horizon, marked with red, and the
anisotropic direction, a = (—0.2,1.0), is the same in all figures. Negative and positive contour lines are
dashed and solid respectively.

5.2 Fold Modelling

Modelling of geological folding is an important component in the Compound Earth Simulator. For this
purpose Hjelle and Petersen (2011) developed a mathematical framework that takes an horizon as initial
condition and simulates a folded structure in a given domain. This framework can replicate all fold classes
as defined by Ramsay (1967) by changing parameter values of F' and ¢ in the equation

F|VT|| +4 (a-VT) = 1. ©)

Here, a defines the axial direction of the fold. Interestingly, the characteristic curves to (5) coincide with
the dip-isogons often used for classifications of folded structures. A minor extension of the algorithm is
needed, since the folded structures above and below the initial horizon have a positive and negative axial
direction respectively. This feature is modelled by propagating a sign with the front. The Fast Marching
method does not create the correct solution for any but the parallel folding class, where ¢ = 0. Figure
3 shows three folds from the same initial horizon (shown in red) where the dashed lines are negative
isocurves, and solid lines positive. All folds in figure 3 have the axial direction a = (—0.2, 1), and are
simulated on a fine grid of 401 x401 nodes. For the class 1A fold in figure 3(a) we have F' = 1,1 = —0.5,
for the class 1B (parallel) fold in figure 3(b) we have F' = 1, = 0, and for the class 1C fold of figure
3(c) we have F' = 1,9 = 1. The remaining fold classes 2 and 3 are modelled with F' = 0,v > 0, and
F < 0,9 > 0, respectively.

5.3 Conclusions

We presented a new Semi-Ordered Fast Iterative algorithm for monotone front propagation. The SOFI
method is fast and simple to implement, and works for general anisotropic front propagations. Unlike
other iterative algorithms, the performance does not depend strongly on the variations of the speed, but
somewhat on the degree of anisotropy. Instead, the performance of SOFI is more similar to the class of
Ordered Upwind Methods, but no prior information on the degree of anisotropy or simplification of the
algorithm are needed. For the SOFI method, numerical experiments indicate a computational scaling of
degree O(N), where N is the total number of unknown nodes. Regarding accuracy, the SOFI method
has an identical solution to the Fast Marching method for isotropic equations, and as the Fast Sweeping
method for anisotropic problems, when the methods has identical stencil formulations.

The SOFI method can use any consistent local wave approximation (stencil), and may therefore keep the
constant velocity assumption to a small area. On isotropic examples the proposed method was shown to
be very fast compared to the Fast Marching method. This relation hods for both the more accurate diago-
nal stencil form, and the edge stencil. Huygens’ principle implies that source points on the front that are
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not close to each other are independent of each other, thus implying parallel implementation possibilities
of the SOFI method. However, there is a communication problem when different source points on dif-
ferent processors try to update the same node, most likely requiring a domain decomposition approach.
Continuation of this work will compare the performance of the algorithm in three dimensions to the per-
formance of other popular approaches, and further test efficiency of the method on anisotropic problems.
It would also be interesting to test the algorithm on non-rectangular grids, where the method itself is
directly applicable. Within seismic processing the computational time is often very long. Therefore the
SOFI method is a promising alternative for simulating seismic traveltimes fast.
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