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Correctly modelling bivariate relationships between geological variables is vital in mineral resource estimation. 
Often these relationships are complex and more simplistic methods of modelling such as Monte-Carlo 
Simulations (MCS), a bigaussian distribution or linear regression are not suitable. MCS where correlation 
coefficients are specified are inherently problematic because they can only reproduce the marginal distribution 
and a specified rank correlation coefficient, they cannot reproduce complex dependency structures. Bigaussian 
modelling is only appropriate if the data is indeed bigaussian (which is essentially never the case for grade 
variables). Elementary linear regression models can only model linear relationships and are often used in a 
deterministic manner. Copulas offer a framework to model and simulate multivariate relationships that go 
beyond correlation coefficients. They allow the strength of dependence to vary in different quantiles. Copulas 
have been used extensively in the recent years, but they have only made a limited appearance in the mining 
industry; for example, they have been used in spatial (geostatistical) simulations (Bardossy and Li, 2008). This 
paper focuses on the use of copulas to model bivariate relationships in a non-spatial sense. The intended 
audience for this paper is the non-statistician, such as a resource geologist, or geochemist.  We introduce the 
concept of copulas including fitting, simulation and validation for the unfamiliar reader. A geologically relevant 
case study is provided where copulas are compared to other traditional methods of bivariate simulations.   

Copulas offer a framework to model multivariate data structures because the 
marginal distributions are modelled separately from the dependency structure 
(which is contained in the copula itself). A copula is a multivariate distribution 
with uniform margins on the interval [0,1]. There are many types of copulas; 
each one has a specific dependency structure. For example a Clayton copula 
has high level of dependence in the lower tail and low dependence in the upper 
tail. Copulas can be used for simulation purposes; a Bivariate Distribution 
linked via a Copula (BDC). Figuratively speaking, to simulate from a BDC the 
marginal distributions are simulated separately from one another and they are 
joined together in a manner which is consistent with the dependency structure 
of the copula. The objective of copula fitting is to fit a known copula to the 
rescaled ranks of the observed data.  

The case study uses alumina and iron data from an iron ore deposit (figure 1). 
Several copulas were fitted to the pseudo observations of the bivariate data 
and as comparison a MCS, linear regression and bigaussian model were also 
fitted to the raw data. The goodness of fit of the copulas was assessed by a range of statistics and graphical 
measures.  The copulas that provided a reasonable fit were carried through to the fitting of a BDC, in this case 
the Clayton, Frank, Plackett and normal copulas. The Clayton BDC was chosen as the most suitable to model 
the data by a selection of statistics and graphical methods. The performance of the comparative (non-copula) 
modelling techniques was poor; none of them accurately modelled the high strength of dependence in the lower 
tail. The Clayton BDC modelled the unusual dependency structure better and captured the high level of 
dependence in the lower tail. Although the Clayton BDC was the most suitable the simulation could have been 
better. This suggests that a more bespoke copula may give more favourable results. 

In this case study it was possible to visually discern that the Clayton model was better than the other methods. A 
quantitative technique for validating across all the methods of bivariate simulations is recommended in future 
studies.  The main conclusions from this case study were that a Clayton copula captured and modelled the high 
level of dependence in the lower tail better than the comparative modelling techniques. This case study 
demonstrates that using copulas to model the complex relationships that often exist between geological 
phenomena could be a promising alternative to other simplistic methods of modelling.   
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Figure 1: Scatter plot of 
observed data 
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1. INTRODUCTION 

1.1 Problem definition 

In geostatistics there has been some research using copulas for purposes of modelling multivariate dependencies 
for spatial conditional simulations (Bardossy and Li, 2008). This paper deals with non-spatial applications of 
copulas for geological data in the mining industry and will introduce the concept and methodology of using 
copulas for a non-statistical reader. See Nelson 2006 for an introductory text on copulas. 

Currently in the mining industry Monte Carlo Simulation (MCS) and elementary regressions are used to model 
relationships between variables (Zou, 2007). In this text MCS refers to the use of the Iman-Conover (IC) 
algorithm (Iman and Conover, 1982) to simulate from a bivariate distribution. Software such as @RISK use the 
IC algorithm to provide a random sample where correlations are defined between variables. The IC algorithm is 
a distribution free method of simulating correlated variables and relies on the versatile Spearman’s rank 
correlation coefficient. The IC algorithm involves defining numerous marginal distributions and a pair-wise 
Spearman’s rank correlation coefficient. The weakness in this methodology is that specification of margins and 
a correlation coefficient does not completely describe the behaviour of the joint distribution. Simulation 
techniques that use the IC algorithm are thus not able to reproduce complex dependency structures; rather they 
just reproduce the rank correlation and the margins. Elementary linear regression (‘best line fit’) is also widely 
used in the mining industry but is very limited because it can only model linear relationships. Furthermore it is 
often used in a deterministic fashion, with more advanced methods such as a Bayesian approach, often not used 
in practice. In summary, methods that are currently used in the mining industry are unlikely to produce 
satisfactory results when complex dependency structures exist and there is significant uncertainty (randomness). 
This is problematic in the mining industry because many phenomena 
have complex relationships.     

1.2 Correlation coefficients  

Correlation is fairly misunderstood concept for non-statisticians. 
Perhaps correlation has enjoyed some undeserved attention over the 
years because of its ease of implementation and because it is 
(apparently) easy to understand. For most mining industry geologists, 
correlation coefficients and linear regressions comprise the entire tool 
kit for exploring and modelling bivariate relationships. However, 
correlation coefficients are just one available tool to describe 
dependencies between random variables. Pearson’s linear correlation 
coefficient is only optimal when the multivariate structure is 
multivariate normal and a linear relationship actually exists. On the other 
hand, rank correlations (e.g. Kendall’s tau (τ) (Kendall, 1938) and 
Spearman’s rho (ρ) (Spearman, 1904)) make no such assumptions 
regarding the multivariate or univariate distributions nor do they assume 
any specific dependency structure. For this reason, rank correlations have 
become quite popular. A common misunderstanding for non-statisticians 
is that knowledge of the marginal distributions and the correlation defines 
the joint distribution. There is in-fact an infinite number of multivariate 
distributions which could fit such a description, unless of course the 
structure is of true multivariate normal form. Figures 2 and 3 illustrate 
this fallacy; the scatterplots show two identical marginal distributions 
(standard normal) and the same correlation coefficient (ρ=0.7) been used 
to create two very different bivariate distributions. These figures 
illustrate how knowledge of a correlation coefficient and margins does 
not necessarily completely inform knowledge of the bivariate structure.  

1.3 Mathematical definitions for bivariate copulas 

Copulas are in themselves a p dimensional distribution whose margins are uniform on the interval [0,1]. Since 
copulas are distributions; density, quantile and probability functions exist for them. Copulas have a parameter 
vector θ.  A multivariate distribution of two variables u and v, C(u,v) is considered a copula if and only if: 

1. U and V ~ Uniform[0,1]  
2. For u and v, C(u,v)=a  when u or v is equal to one and the other is equal to a 
3. C(u,v) is isotonic; i.e., C(a)≤C(b) for all a,b  in [0,1]2, a≤b 

Figures 2 and 3: Identical marginal 
dist. and correlation used to create 

different bivariate structures 
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4. C(u,v) is increasing 
5. C(u,v) =0 if u or v is equal to 0 

Sklar’s theorem (Sklar, 1959) is fundamental to copula analysis. Consider two random variables X and Y and 
their corresponding density functions F(x) and G(y). If H is the joint density and C is a copula then:  

,ܺ)ܪ  ܻ) = ,(ݔ)ܨሼܥ ሽ(ݕ)ܩ ܺ, ܻ ∈ ℝ (1) 
The theorem states that, for a given joint distribution, a copula exists that can model the multivariate structure 
by linking the marginal distributions. If this joint density H(X,Y) is explicitly known then the copula C, and the 
density functions of the two variables F(x) and G(y) can be known with absolute certainty. In practice, 
knowledge of H(X,Y) is often very difficult to derive so the copula C usually needs to be estimated. This is 
made easier if the data is transformed into the domain as the copula, that is the two marginal variables are each 
transformed to be uniform over the interval [0,1], i.e., [0,1]2.  

1.4 Copulas and simulation of bivariate distributions 

A copula is a multivariate distribution which exhibits a specific dependency structure. There are many types of 
copulas each one has a different dependency structure; an appropriate copula choice depends on the dependency 
structure evident in the observed data. As an illustrative example, figure 4 shows the distribution of a Gumbel 
copula (notice it is only defined on the interval [0,1]2). Figures 5 and 6 illustrate the same copula used to link 
together various univariate distributions, note the simulation is now defined in the space of the univariate 
distributions.  The Gumbel copula has a strong level of dependency in the upper tail and a weak dependence in 
the lower tail – this characteristic is evident in figures 4, 5 and 6.  

 

1.5 Fitting copulas to data 

The Probability Integral Transform (PIT) transforms any continuous univariate distribution into a standard 
uniform distribution. It is a monotonic increasing transform. The PIT is used to derive a cdf from a pdf:  

(ܽ)௫ܨ            = න ௫݂(ܽ). ݔ݀
ିஶ  (2) 

After applying the PIT, the domain of the cdf Fx(x) is [0,1] – this fits in nicely to the domain of a copula! 
Equation (2) applies the pdf; fx(x), but if the pdf is not known and we are working with sample data we can use 
an empirical counterpart to derive the cdf (edf):  

(ݔ)௫ܨ            = ܴ/݊ (3) 
Where Ri is the rank of the ith observation. In copula analysis this transformation is slightly altered by putting 
(n+1) on the denominator to avoid problems at the boundary of [0,1]2 (Kojadinovic and Yan, 2010). Suppose we 
are working with a bivariate dataset (X,Y) where Ri and Si denotes the ranks of X and Y respectively; 

           ܷ = ܴ݊ + 1 ܽ݊݀ ܸ = ܵ݊ + 1 (4) 

This transformation produces what are referred to as the ‘pseudo observations’. It is worth noting U and V are 
uniformly distributed over the discrete set {1,..,n}/(n+1), wrt to ܨ௫(ݔ) and ܩ௬(ݕ).  Importantly (U, V) contain 
the information about the dependency structure of (X,Y)  (Genest and Favre, 2007). The pseudo observations 
(U, V) are sometimes referred to as the ‘empirical copula’ (Deheuvels, 1979). The objective of copula analysis 
is to define a known copula which is as close to the empirical copula as possible. 
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A copula is invariant under monotonic increasing transformations. Let φ denote a monotonic increasing 
transformation, for example the pseudo transformation defined in equation (4). Let U= φ(X) and V=φ(Y) denote 
two pairs of random variables; X and Y can be considered the original data and U and V can be considered the 
pseudo observations (transformed to uniform [01]2).  Genest and Favre (2007) showed that the copula defined 
for (X,Y) is the same as the copula defined for (U, V). This justifies fitting the copula to the transformed pseudo 
observations. Genest and Favre (2007) and Kojadinovic and Yan (2010) therefore advocate fitting the copula to 
the pseudo observations rather than cdf derived from the PIT. This is advantageous because it does not require 
the estimation of the marginal distribution to perform the PIT (equation 1), leaving one less place to make an 
error in the analysis and introduce bias.   

As well as facilitating copula fitting; pseudo observations can also be a very useful visual tool for an exploratory 
data analysis viewpoint. A plot of the pseudo observations can speak volumes about the dependency structure 
evident in the data. This is because the marginal behaviour (e.g., skewness, dispersion, etc.) cannot distort the 
dependency structure. Referring again to figure 4, 5 and 6; 5 and 6 are both described by the copula shown in 4. 
This would have been very difficult to detect by looking at the raw data because it is distorted by the 
characteristics of the marginal distributions. 

1.6  Parameter estimation  

The copula parameter(s) are closely related to the strength of dependence between the variables. In this study we 
only consider copulas with one parameter.  The correlation coefficient used for copula analysis must be 
invariant under the monotonic increasing transformations; i.e.: 

           ߱(ܺ, ܻ) = ߱(ܷ, ܸ) (5) 
Where ߱ is some correlation measure, X and Y is the raw data and U and V are the transformed data. It has been 
shown that rank correlation measures such as τ and ρ are invariant under monotonic transforms (Al-Harthy et. 
al, 2007). On the other hand, Pearson’s correlation is not invariant under monotonic transforms and is therefore 
not appropriate for copula analysis. The three most common methods of estimating copula parameter(s) are τ, ρ 
and Maximum Pseudo Likelihood (MPL). Rank measures of correlation can be related to the copula density and 
hence the copula parameter θ. Parameter estimation using rank correlation is very popular because closed form 
solutions exist for many commonly used copulas. For example the τ can be related to the Gumbel copula density 
by:  

           ߬ = 1 −  ଵ (6)ିߠ
ρ can also be related to copula densities in a similar fashion. MPL is analogous the Maximum Likelihood 
Estimation (MLE) but has been adapted to handle pseudo observations, the method was formalised by Genest et 
al. (1995). Deriving the MPL estimate requires maximising the following function by changing the parameter θ:  

(ߠ)݈            =݈݃ ൜ܿఏ ൬ ܴ݊ + 1 , ܵ݊ + 1 ൰ൠ
ୀଵ  (7) 

Where cθ is the copula density. MPL is often considered a superior method for copula parameter estimation 
(Genest and Favre, 2007). The copula package (Kojadinovic and Yan, 2010 and Yan, 2006) in the R software 
(R Development Core Team, 2011) provides functions to carry out copula parameter estimation using MPL, τ 
and ρ method.  

1.7 Assessing the goodness of fit of a copula 

Given that the pseudo observations are derived by non-parametric means (U,V) they are the most reasonable 
bench mark for validating how well a copula fits the data (Genest et al., 2009). The Cramér-von Mises statistic 
(CVM, see Anderson, 1962) is a non-parametric method for assessing the goodness of fit of a known probability 
distribution to the empirical distribution. It is also used in copula analysis to test the hypotheses that the 
empirical copula (pseudo observations) is compatible with the estimated copula. This test can be implemented 
for the Clayton, Gumbel, Frank, normal and Plackett copulas in the copula package. The p-value for this test 
can be determined a bootstrap method and the faster multiplier method (Kojadinovic and Yan, 2009). The CVM 
test statistic Sn is (a small value of Sn indicates a better fit): 

 ܵ = න ݊[,ଵ]మ ൛ܥ(࢛) −  (8) (࢛)ܥൟଶ݀(࢛)ఏܥ

 =൛ܥ(ݑ, (ݒ − ,ݑ)ఏܥ )ൟଶݒ
ୀଵ  (9) 
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The log likelihood associated with the MPL parameter estimate can also be used as a measure of the goodness of 
fit. The larger the value of the log likelihood, the better the fit is considered to be. A plot of the pseudo 
observations can be compared to a large value of random numbers generated from the copula to see how well 
they agree. If the copula mimics the structure of the pseudo observations then the copula may be an appropriate 
choice to model the data.  

2. CASE STUDY FROM IRON ORE DATA 

2.1 Background to data 

Drill hole data was sourced from an iron mining company. The data provided consisted of the main chemical 
assays of the ore (iron (Fe), phosphorous (P), silica (SiO2), alumina (Al2O3) and LOI or ‘loss on ignition’). The 
bivariate relationships of the various combinations of these assays are very important to both resource modelling 
and day to day quality management of the iron ore business. They are usually modelled in industry using simple 
linear regression models, Pearson’s correlation or (less commonly) MCS. Our analysis was carried out on the 
bivariate distribution of Fe and Al2O3 because this relationship looked the most interesting and complex (figure 
1). The data were transformed into standard normal prior to commencement of copula analysis. The relationship 
between Fe and Al2O3 was originally negative. This negative relationship is usual for these two variables 
because the rock is largely comprised of iron  minerals, thus an increase in silicates (and thus silica SiO2) 
generally leaves less space for iron minerals and corresponds to a decrease in Fe. For copula analysis it was 
necessary to manipulate this relationship into a positive one, Al2O3 values were multiplied by -1. This step is 
mechanical and was taken because most of the copulas available in the copula package only model positive 
relationships; τ for this pair was 0.240.  The parameters of the margins were estimated by Maximum Likelihood 
Estimation (MLE).  

2.2 Fitting methodology for copulas and Bivariate Distribution linked via a Copula (BDC)  

The copulas fitted to the data were: Clayton, Gumbel, Frank, Normal, Plackett, Galambo, Husler Reiss (HR) and 
Tawn. The following methodology was carried out for each copula. 

Each copula parameter was estimated by the MPL method detailed in section 1.6. For each copula fitted to the 
pseudo observations the parameter estimate, standard error and MPL were recorded.  Only the copulas which 
were deemed a close fit to the pseudo observations were considered for use in modelling the BDC. The 
goodness of fit was assessed by the value of the pseudo log likelihood and the appropriateness of the copula 
dependency structure. The latter was visually gauged by how well 10,000 random numbers from each copula 
fitted the observed pseudo observations. For many of the copulas it was evident that the dependency structure 
was not appropriate. Additionally, the Cramér-von Mises test statistic was considered as a measure of goodness 
of fit.  

For the copulas deemed appropriate, a bivariate distribution linked via a copula (BDC) was initially created 
using the copula parameter estimated by MPL. The margins were specified as normal with the MLE for the 
mean and variance. This initial BDC served as a ‘guesstimate’ or starting point for more rigorous fitting and 
optimisation methods. These methods involved maximising the log likelihood of the BDC by changing the 
marginal parameters and the copula parameter.  The BDC was fitted to the raw observed data to produce a final 
estimate of the copula parameter and the parameters of the marginal distributions. From this final BDC, 10,000 
random numbers were generated and the log-likelihood was recorded.  

2.3 Methodology for comparative modelling techniques  

A bigaussian distribution was also simulated using the sample variance matrix and sample means as the 
parameters. A MCS was also completed in the @RISK software. The margins were specified as normal and 
using the ML estimates for the mean and variance.  

2.4 Validation procedure 

To validate the adequacy of each simulation method (linear regression, bigaussian, MCS and copulas) a range of 
statistics and graphical diagnostics were used. Firstly each simulation was checked to see that the marginal 
distribution was preserved. This was carried out via a Kolmogorov-Smirnov (KS) test and Q-Q plots. To assess 
how well each simulation method reproduced the dependency structure the scatter plots of the final simulations 
were also visually compared to the observed data.   
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3. RESULTS AND CONCLUSIONS  

The results of the copula fitting are summarised in table 1. 
According to the maximised pseudo log-likelihood the 
Clayton copula offers the best fit. Additionally the CVM 
test statistic was the smallest for the Clayton copula, which 
is confirmatory of this result. The Frank, Normal and 
Plackett copulas all performed very similarly to each other 
with regards to the MPL and CVM statistic.  Based on these 
statistics and inspection of 10,000 random numbers 
generated from each copula the Clayton, Frank, Plackett and 
Normal copula were carried through to further analysis of 

fitting a BDC. The summary statistics for the Clayton, 
Frank, Plackett and Normal BDC are summarised in table 2.  

The log likelihood of the Normal BDC was undefined thus it 
was unable to be fitted to the data. The Clayton log 
likelihood is larger than the Frank and Plackett copula 
indicating a better fit for the Clayton copula. Additionally 
the Clayton and Frank preserved the margins Fe and Al2O3 
whereas the Plackett copula did not preserve the marginal distribution of Fe.  

Figure 7 shows the scatterplots from the three fitted BDC. The grey dots are the simulated values and the black 
points are the observed values. The Clayton BDC has captured the high strength of dependence in the lower tail 
and the weak dependence in the upper tails. The Frank and Plackett copula did not capture the dependency in 
the lower tail at all. These plots and the statistics in table 2 are taken as evidence that the Clayton copula has 
modelled the data better than the Frank or Plackett copula. However it is evident that the Clayton copula has not 
been able to model the dependency entirely satisfactorily, although there is a presence of a higher dependency in 
the lower tail it may not be as strong as we would like.   

Figure 8 shows the scatter plots for the other simulation methods namely MCS and the bigaussian model. 
Neither simulation captured the high level of dependency in the lower tail; however, both methods did preserve 
the marginal distribution of Fe and Al2O3. In this analysis the Clayton copula modelled the dependency structure 
of the bivariate distribution of Fe and Al2O3 better than the other copulas and comparative methods.  

The main limitation in this study was that there was no quantitative method to compare how each simulation 
method reproduced the dependency structure. Visual inspections of the scatter plots were the only means to 
assess reproduction of dependency structure. This qualitative approach was not considered a major limitation in 
this instance, because the Clayton copula was the better performer and the other simulation methods did not 
model the data accurately at all. The use of scatter plots to compare copulas and other simulation techniques 
would not be appropriate if it were not visually obvious how well each simulation performed. Moreover this 
strategy becomes impossible when the dimensionality is greater than 3.  
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4. CONCLUSIONS AND 
RECCOMENDATIONS  

This study has demonstrated that 
although copulas are a useful tool for 
modelling data with complex 
dependency structures they are not a 
magic bullet. In this instance the 
Clayton copula outperformed the other 
simulation technics and the other 
copulas. However the Clayton copula 
did not produce a completely 
satisfactory result and improvements 
could be made. This indicates that this 
particular bivariate relationship could 
not be explained by the ‘off the shelf’ copulas and a more bespoke approach may provide better results. Also 
there may be a complex interaction between all five variables and this could explain the dramatic change in 
behaviour at (-3/2, -3/2) for Fe and Al2O3. Modelling the entire dataset with all five variables with a five 
dimensional copula is recommended 

This case study has demonstrated that copulas can be a viable alternative to other methods of bivariate 
modelling when complex dependency structures exist. In this study the Clayton BDC clearly modelled the data 
more accurately than other BDCs or comparative techniques. Copulas are recommended over other more 
simplistic approaches because they better handle complex dependency structures, however more bespoke 
implementation may sometimes be required. Additionally they are easily implemented and are freely accessible 
in the R package ‘copula’.  
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