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Abstract:    Nowadays modern high-rise buildings have unique facades which partly rely on the 
incorporation of curtain walls. A curtain-wall system encloses the building to separate the internal and 
external environments. It can reduce building weight and it also transfers the wind load to the floor structure 
of the building. Wind-load codes govern the design of safe curtain wall systems against natural wind forces, 
considering direct static and dynamic pressure. In this paper aero-elastic considerations are investigated as a 
potential failure mode of curtain walls. Curtain-wall panels are regarded as comprising a flexible material 
such as glass and aluminium cladding subjected to an airflow that is parallel to their surface.  

It is well-known that a flexible panel exposed to increasingly high flow speed will succumb to a divergence, 
or static buckling-type, instability at a particular critical flow speed.  At a higher flow speed the panel will 
experience violent oscillatory flutter-type instability. Accordingly, we investigate the susceptibility of 
curtain-wall panels to aero-elastic effects.  

A state-space model, based upon computational modelling, is used to investigate the aero-elastic stability of 
each flexible panel in isolation. We briefly present a recently developed approach and its new extension to 
theoretical modelling of the fully-coupled interaction between a simply-supported flexible panel and a fluid 
flow. We solve the boundary-value problem to determine the long-time response and investigate the effects 
on stability of adding localised structural inhomogeneity.  

Localised structural inhomogeneity is incorporated as an additional single spring type support to the panel. 
The dependence of instability onset-flow speeds, and the forms of divergence and flutter instabilities, upon 
the added spring stiffness and its location are then investigated. Results show that the morphology of the 
unstable solution space significantly differs from that of the oft-studied corresponding hydro-elasticity 
problem because of the different density ratio between fluid and solid media. Of particular interest is that in 
the present aero-elastic system flutter occurs through the coalescence of two non-oscillatory unstable 
divergence modes.  

The inclusion of a localised spring support to an otherwise unsupported panel is shown to be stabilising with 
respect to the critical divergence-onset flow speed and the limits to this strategy are identified. This strategy 
is marginally destabilising with respect to the more damaging flutter instability that occurs at higher wind 
speeds. However, at a sufficiently high spring-stiffness a sudden change to the solution morphology occurs 
that yields two unstable non-oscillatory divergence modes and flutter is postponed to much higher wind 
speeds. We close the paper with an assessment of what these results mean in dimensional terms as applied to 
different cladding panels. Overall, our results suggest a means to ameliorate adverse aero-elastic effects in 
potentially disastrous extreme wind-force situations such as those encountered in typhoons and tropical 
cyclones. 

Keywords: aero-elasticity, curtain-walls, wind-load effects, buckling/flutter-type instability, computational 
modelling, state-space model 
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1. INTRODUCTION 

Fluid-structure Interactions (FSIs) feature the interaction of a fluid flow over a flexible plate. The plate could 
be part of a ship’s hull, the skin of an aircraft fuselage or wing, window or roof of a building. The present 
paper is focused on the panels of an external curtain wall subjected to up to hurricane-force wind speeds 
aligned with their longitudinal axis; one such panel is schematically shown in Fig. 1. It is well known, e.g. 
Dugundji et al. (1963), Weaver & Unny (1971), Ellen (1973), Lucey & Carpenter (1993), Pitman & Lucey 
(2009), that, for an initially flat plate, low-amplitude deformations generate a pressure field that, at critically 
high water or wind speeds, applies a force that amplifies the plate deformation. This is best known as the 
problem of panel flutter. There also exists a pre-flutter range of applied flow speeds in which a quasi-static or 
buckling-type of instability called divergence exists.  

The vast majority of incompressible flow studies– in which the present regime of air-flow lies - have used 
water as the fluid medium. This gives a solid-to-fluid density ratio that is typically less than 101. For airflow 
over a glass or aluminium panel, this ratio is more than 103 giving a parameter regime that has not hitherto 
been explored presumably due to a lack of recognised applications until the emergence of curtain walls as an 
architectural feature. The present work shows that this parametric change leads to some surprising changes 
(from the now classical hydro-elastic case) in the morphology of the non-dimensional solution space.  

In most engineered systems it is necessary to 
avoid panel instabilities, especially flutter 
because its motions are highly destructive in 
contrast to divergence instability that usually 
leads to a nonlinearly saturated statically 
deformed state of the panel. Designing out 
instability within the range of flow speeds to 
which the panel will be subjected is 
commonly achieved by material selection or 
increased use of material by way of a thicker 
plate, each of which effectively stiffens the 
flexible plate. However, these strategies are 
costly both in financial terms and the penalty 
of increased dead-weight.  In the present work we show how the inclusion of a highly localised spring 
support can be used to control the onset speed or even occurrence of divergence and flutter instabilities at 
flow- speeds within a desired operational range – in this case set by the maximum wind-speed in an extreme 
storm event.   

2. METHODS 

Our methods adopt the linear two-dimensional modelling of Pitman & Lucey (2009), extending the structural 
side of the model to permit the inclusion of a localised spring support. Accordingly, only brief details are 
provided below, the reader being referred to that paper and Tan et al. (2010) for more detail. 

The small-amplitude motion of a thin flexible plate, supported by an isolated spring at x=xk with stiffness 
constant k, in the presence of a fluid flow, Figure 1, is ߩℎ డమఎడ௧మ + ݀ డఎడ௧ + ܤ డరఎడ௫ర + ݔ)ߜ݇ − ߟ(ݔ = −Δܲ(ݔ, 0,  (1)  (ݐ

where ݔ)ߟ,  , ℎ, ݀ and B are respectively, plate’s deflection, density, thickness, damping coefficient andߩ ,(ݐ
flexural rigidity of the flexible panel. The fluid pressure on the right-hand side, Δܲ(ݔ, ,ݕ  is determined by (ݐ
solving the Laplace equation for the perturbation-velocity potential subject to the no-flux condition at the 
fluid-solid interface and decay to zero in the far field using a boundary-element method. The perturbation-
velocity at the interface is then evaluated and used in the linearised unsteady Bernoulli equation following a 
streamline along y=0 from far upstream to determine the pressure along the interface. This yields the 
expression −ሼΔܲሽ = ሷሽߟାሿሼܦሿሾߔሾߩ2 + ሶሽߟାሿሼܦஶሾܶሿሾܷߩ2 + ሶሽߟଵሿሼܦሿሾߔஶሾܷߩ2 +  ሽ          (2)ߟଵሿሼܦஶଶሾܶሿሾܷߩ2

where [Φ] and [T] are NxN matrices of invariant influence coefficients that arise from the boundary-element 
method deployed using N panels of equal length to discretise the flexible surface, [D+] and [D1] are spatially 
averaging and differentiation matrices, and ρ and U∞ are the density and mean speed of the fluid; the over-dot 
notation on the interfacial variable indicates differentiation with respect to time. 

Localised added spring support 

x 

y 
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Figure 1: Schematic of a flexible panel in a uniform flow;
the localised spring support is added as a stabilising
strategy. 
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Equation (1) is written in finite-difference form, using the same discretisation that defined the boundary-
elements in the flow solution and substitution of the expression for fluid pressure in Eqn. (2) yields the FSI 
system equation as  ሾܣሿሼߟሷሽ + ሾܤሿሼߟሶሽ + ሾܥሿሼߟሽ = 0   ,                (3) 

where ሾܣሿ = ሿ߇ℎሾߩ− + ሿܤାሿ   , ሾܦሿሾߔሾߩ2 = −݀ሾ߇ሿ + ାሿܦஶሾܶሿሾܷߩ2 + ሿܥଵሿ   , ሾܦሿሾߔஶሾܷߩ2 = ସሿܦሾܤ− − ܭ ቂ݇ܫቃ +  ,   ଵሿܦஶଶሾܶሿሾܷߩ2
and in which  [I] and [D4] are respectively, the identity and fourth-order spatial differentiation matrices. The 
matrix [Ik] has zero entries everywhere except that the i,i element is unity, where in the discretised system the 
ith  row corresponds to the location of the added spring at x=xk.  ܭ is stiffness coefficient. 

Introducing state variables  ݔ = ேାݔ  andߟ =  ሶ for i from the 1st point to the Nth point, the 2N outputߟ
vector for the state-space model is ൛ሼߟሽ, ሼߟሶሽൟ் = ሼݔሽ and the state differential equation being expressed as ሼݔሶ ሽ = ሾܪሿሼݔሽ                  (4) 

where  ሾܪሿ = ቂ0 Ιܨ ሿܧቃ in which  ሾܧ = −ሾܣሿିଵሾܤሿ and ሾܨሿ = −ሾܣሿିଵሾܥሿ. 
The long-time response is found by first assuming single-frequency response in the time domain, and then 
extracting the resulting eigenvalues of [H]. The single frequency response is proportional to ݁௦௧ where s is a 
complex variable. The system eigenvectors can then be used to assemble the deflection, η(x,t), of the panel. 

3. RESULTS 

3.1. The Effect of Density Ratio on System Stability 

We first present the FSI system dynamics in the context of airflow over a glass curtain-wall panel, showing 
how its behaviour differs from those of the more commonly studied applications in which the fluid is water. 
The dimensional properties used herein correspond to those of a purely elastic (d = 0) glass panel of length L 
= 1.7 m with h = 4 mm, ρm = 2400 kg/m3 and B = 381 Nm; the fluid is air with density ρ = 1.27 kg/m3. 
Hinged-end restraints are applied to the panel. However, for scalability we present our results in non-
dimensional form. Non-dimensionalisation based upon panel length, L, and free-stream flow speed U∞ yields 
a system with two control parameters, ߉ி =  ಮమయ   and  ߤ = ఘఘ   ,            (5a,b) 

described respectively as the stiffness and mass ratios; for a panel of given dimensions and material 
properties, the former represents the flow speed and the latter the density ratio (ρm/ρ) of the two media. 
Figure 2 shows the variation of the first two system eigenvalues with stiffness ratio. Note that all of the 
system eigenvalues are calculated in our solution process but that our focus herein is upon the lowest 
frequency modes because these are the first to become unstable with increasing flow speed. The real and 
imaginary parts of the eigenvalues are respectively plotted in Figs. 2a and 2b. Positive(negative) real part 
indicates amplification(decay) of a mode while the imaginary part denotes the oscillation frequency of the 
panel. In addition to the results for air over glass (ρm/ρ=2400/1.27), corresponding results for water over glass 
(ρm/ρ=2400/1000) and an intermediate value of density ratio (ρm/ρ=2400/100) are presented in Fig. 2.  

At zero stiffness ratio all modes are purely oscillatory and neutrally stable. When air is the fluid medium, the 
frequencies of the first two modes air are much higher than their corresponding values for water. This is to be 
expected because the added mass due to movement of water as the panel vibrates is greater by virtue of its 
higher density. Increasing the stiffness ratio from zero reduces the oscillation frequency of panel oscillations 
until a critical value (ΛF = 40) is reached at which Mode 1 ceases to oscillate – this marks the onset of 
divergence instability. This critical value agrees well with previous studies, e.g. Weaver & Unny (1971), 
Ellen (1973), Lucey & Carpenter (1993), which were based upon Galerkin methods. The present study 
demonstrates that this critical value is independent of density ratio as would be expected given that inertial 
forces are absent exactly at divergence onset where the fluid and structural stiffnesses exactly balance each 
other.  
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   (a)       (b) 
 
Figure 2: Variation of system eigenmodes with stiffness ratio (non-dimensional flow speed) for different 
values of density ratio (ρm/ρ): • (black), 2400/1.27; + (green), 2400/100; x (blue), 2400/1000 where (a) is the 
real (positive, growth; negative, decay) part, (b) is the imaginary (oscillatory) part of the eigenvalues. 

At higher values of stiffness ratio, the panel 
experiences non-oscillatory divergence instability 
until a value of approximately 270 is reached. For the 
lower density ratios (including water flow), 
divergence recovery occurs whereas for airflow 
Mode 2 additionally succumbs to divergence 
instability. Continuing to increase the stiffness ratio 
yields a region of neutrally stable Mode 1 and Mode 
2 oscillations for the lower density ratio cases 
followed by coalescence of these modes to give a 
powerful flutter instability. In contrast the airflow 
case features the coalescence of the two unstable 
non-oscillatory divergence Modes 1 and 2 to create 
the oscillatory flutter instability. This highly unusual 
(unique to the authors’ knowledge) sequence of 
events in FSI – two non-oscillatory modes merging 
to give an oscillatory instability - occurs principally 
because for airflow the FSI is dominated by fluid-
stiffness effects due to the fourth term of the fluid-
pressure loading in Eqn. 2. For the equivalent fluid-
stiffness effects between air (with density ρA) and water (with density ρW), the fluid-damping and fluid inertia 
effects, respectively given by the third, second and first terms in Eqn. 2, are factors of (ρA / ρW)(1/2), (ρA / 
ρW)(1/2) and (ρA / ρW) smaller for air. It is these terms that are principally responsible for the coupling of 
Modes 1 and 2 that lead to divergence recovery when water is the fluid medium.  

To close this sub-section we explore how the switch of solution morphology depends upon the solid-to-fluid 
density ratio. Figure 3 shows the variation with density ratio (ρm/ρ) of the values of stiffness ratio for each of 
Mode-1 and Mode-2 divergence-onset (where the latter occurs), divergence recovery and modal-coalescence 
flutter. It is clearly seen that the system solution follows the pattern typical of water over a flexible panel for 
density-ratio values up to a threshold value of approximately 240 (noting that ln(240)=5.48 on the horizontal 
scale). For higher values than this, the fluid density is sufficiently low, relative to that of the solid, that both 
Modes 1 and 2 can concurrently succumb to divergence instability and then coalesce at higher flow speeds to 
create the flutter instability. We remark that in practical applications, only the Mode-1 divergence would be 
evident because it has a higher amplification rate than Mode 2 as can be seen in Fig. 2a. 

3.2. Stabilization using an Added Spring Support 

We now assess the effect of adding a single (line) spring support (see Fig. 1) to the glass panel as a strategy 
for controlling its aeroelastic destabilisation in high wind speeds; Tan et al. (2011) shows that this strategy 
works, at least conceptually, for marine applications. We continue with the same glass and air data listed in 
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Figure 3: Variation of the stiffness ratio of critical
points – divergence onset/recovery and modal-
coalescence - in the eigenvalue space (typical of
Fig. 2) with the solid-to-fluid density ratio. 
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Section 3.1 but now adding a spring with stiffness constant varied in the form of multiples of k where k = 
8500 N/m2.  

Figure 4 shows the variation with stiffness ratio (non-dimensional flow speed) of the system eigenvalues 
when the spring support is included at the panel mid-point for the cases 0k (no spring, giving the result for 
ρm/ρ=2400/1.27 in Fig. 2), 1k and 2k. As the spring constant, k, is increased, the critical value of ΛF set by the 
Mode-1 divergence-onset flow speed for a panel of given flexural rigidity, is seen to increase. This is readily 
understood by consideration of the mode shape of the instability. Mode 1 is principally the fundamental 
mode of panel vibration and thus placing the spring support at its anti-node clearly serves to suppress this 
mode. Figure 2 also shows the Mode-2 divergence-onset at ΛF ≈ 270 is unaffected; this is because the spring 
is located at the node of the mode shape.  The modal-coalescence flutter that occurs at ΛF-values higher than 
those of Mode-1 and Mode-2 divergence onset is reduced to slightly lower flow speeds. The overall finding 
here is that adding a spring support is a very effective way to postpone the onset of aeroelastic buckling of 
the fundamental mode to higher airspeeds.  

 

   (a)       (b) 
Figure 4: Variation of system eigenmodes with stiffness ratio (non-dimensional flow speed) for different 
values of localized spring support applied at panel mid-point: • (black), none; + (green), 1k; x (blue), 2k 
where (a) is the real (positive, growth; negative, decay) part, and (b) is the imaginary (oscillatory) part of the 
eigenvalues. 

 
 

 
Figure 5: Variation of system eigenmodes with stiffness ratio (non-dimensional flow speed) for different 
values of localized spring support applied at panel mid-point: the upper row represents the real part, the lower 
row the imaginary part and the first, second and third columns are respectively for 2k, 3k, and 4k. 

While the results of Fig. 4 demonstrate the control of divergence instability, the range of k used therein has 
very little effect on the more destructive flutter instability at higher flow speeds. Figure 5 shows the effect of 
further increases to the stiffness of the spring support on the eigenvalue-solution morphology. The results for 
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2k (first column) are replicated from Fig. 4 showing the standard airflow-over-glass sequence of instabilities. 
For 3k the critical speeds of Mode-1 and Mode-2 divergence onset are almost identical; the significant feature 
here is that although modal-coalescence then occurs, its instability loop closes at ΛF ≈ 460 from thereon to be 
replaced by non-oscillatory divergence. A further increase to 4k is seen to eliminate flutter and for it to be 
entirely replaced by both Mode-1 and Mode-2 divergence. Thus the inclusion of an isolated spring can be 
used to replace a more damaging flutter instability with buckling of the panel that would become static due to 
nonlinear saturation if some structural damping existed (Lucey et al. 1997). 

We now summarize quantitatively the effects on the critical flow speeds for Mode-1 and Mode-2 divergence-
onset and flutter-onset  speed (where these occur) of the stiffness of an added single spring support added at 
each of the panel mid-point and at 0.25L from the leading edge of the glass panel. To do this, we change the 
non-dimensionalisation scheme from that of Eqn. (5) which was based upon panel length. The foregoing 
results show that for high stiffness the added spring can effectively shorten the panel length thus rendering 
this non-dimensional scheme inappropriate as a measure of divergence-onset flow speed. Thus, we allow 
panel length to be a free parameter and non-dimensionalise using the scheme presented in Lucey et al. 
(2003). This gives two new non-dimensional parameters, ഥܷ = ܷஶ ()య/మఘభ/మ  and  ܮത = ೝ,         (6a,b) 

where the natural length scale is ܮ = ℎߩ ⁄ߩ . Clearly their relationship to the non-dimensional stiffness 

ratio is 32LUF =Λ . To complete the non-dimensional scheme, the coefficient of the added spring support is 

non-dimensionalised using ܮ and the flexural rigidity of the plate.  For a single localized spring support 
respectively, we then have ത݇ = ଷܮ݇ ⁄ܤ . Thus, the non-dimensional critical speeds are functionally given as ഥܷ = ݂൫ܮത, ത݇,  ൯                 (7)ݔ̅

where ̅ݔ = ݔ ⁄ܮ  is the non-dimensional distance of the location of the added spring from the panel leading 
edge.  

Figs. 6(a) and 6(b) show the variation of critical flow speeds with the magnitude of the added spring  support 
for the two cases of spring location ̅ݔ = 0.5 and 0.25; in each figure ܮത = 0.2259 (that gives the same 
physical length as the panels investigated through Figs. 2-5. These results clearly show that the addition of a 
single localized spring support can significantly increase the Mode 1divergence-onset flow speed. As could 
be expected on physical grounds, this strategy is more effective when the spring is placed at the panel mid-
point. When placing it here, it is noted that there is a threshold of approximately ത݇ = 2.69 x 104, for which 
the morphology of the solution changes, as shown through Fig. 5, and the modal-coalescence flutter of 
Modes 1 and 2 ceases to occur with an almost constant critical speed for Mode-1 divergence onset thereafter.  

4. SUMMARY 

A model fusing computational and theoretical methods, exploiting the advantages of each, has been used to 
predict the aero-behaviour of flexible panels. A particular merit of the approach is that it can be used to find 
the FSI eigenmodes of flexible panels and walls that include localized inhomogeneity. 

The results presented herein for a purely elastic glass panel show that the solution morphology is 
significantly different from that of more dense fluids (e.g. water) interacting with flexible plate. Of particular 
note is that the present system features a range of flow speeds in with both Mode 1 and Mode 2 are unstable 
in divergence and that these non-oscillatory modes can coalesce with an increase in flow speed to create 
flutter instability.  We have also shown that the addition of an isolated spring support to the panel can yield a 
very significant extension to the flow-speed range before divergence instability sets in and that further 
increases to its stiffness can cause the modal-coalescence flutter to be replaced by divergence although with 
no further increase in its critical speed.  

To give an engineering feel for these benefits, we provide the following dimensional examples for 
divergence-instability onset. For a glass panel subjected to air flow with a single spring added at its mid-
point, the critical-speed function in Eqn. 7 becomes ܷ = ܮ)݂ ℎ⁄ , ݇, 0.5). Table 1 then lists the predicted 
divergence-onset flow speeds for each of three typical flat tempered glass panels for different values of the 
added spring support. Overall, these data show how the spring support can increase the allowable wind speed 
for the panels of curtain walls. 
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   (a)      (b) 

Figure 6: Variation of Mode-1 and Mode-2 divergence-onset, and modal-coalescence flutter-onset flow 
speeds with the coefficient of the added spring support for a panel with length ܮത = 0.2259: spring added at (a) 
panel mid-point, and (b) 0.25L from the leading edge of the panel. 

Table 1: Dimensional divergence-onset flow speeds (km/hr) for three typical flat tempered glass panels and 
with different levels of spring support. 

 L/h 

Spring constant 
(k=8500N/m2) 

533 
(L=2.135m, h=4mm) 

406 
(L=2.440m, h=6mm) 

366 
(L=3.66m, h=10mm) 

0k 126 189 219 

0.05k 139 200 230 

0.5k 224 266 287 
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