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Abstract:

Subgrid-scale (SGS) parameterisations of turbulence with self similar scaling laws are developed for large
eddy simulations (LESs) of atmospheric and oceanic f ows. The stochastic SGS modelling approach of
Frederiksen and Kepert (2006) is used to determine the model coeff cients self-consistently from higher
resolution reference direct numerical simulation (DNS). The resulting LES then replicates the statistics of
the DNS at the resolved scales. In general the SGS model coeff cients depend on both the zonal and total
wavenumbers, making them anisotropic.
The f ow f elds are simulated using a two-level quasi-geostrophic model that incorporates the processes
of baroclinic instability and the interaction of synoptic-scale structures and inhomogeneous Rossby wave
turbulence. Two specif c basic f ows are analysed: an atmospheric f ow with large scale jets in the mid-
latitudes; and an oceanic f ow representative of the Antarctic Circumpolar Current. Despite the obvious
differences, these f ow f elds exhibit similar turbulent properties. In both cases the turbulent energy in
the system is injected at the Rossby wavenumber (kR), and there is a constant transfer of enstrophy from
the Rossby waves to the small-scale (high wavenumber) structures. The key difference, is that in the
present simulations the baroclinically unstable Rossby waves within the atmosphere occur at kR ≈ 14,
whilst in the ocean kR ≈ 140. This makes the ocean a more computationally challenging case, as a f ner
grid is required to resolve the energy injection. The DNSs presented within capture the energy injection
of both cases, as they have a triangular wavenumber truncation of T = 504. This is equivalent to 1536
longitudinal and 768 latitudinal grid points.
It is found that for both the atmosphere and ocean, the SGS model coeff cients are approximately isotropic
if the LES truncation wavenumber is signif cantly larger than kR. The isotropised prof les decrease in
magnitude and become steeper as resolution increases. A unif ed scaling law is determined that represents
both the atmosphere and ocean SGS processes, by non-dimensionalising the model coeff cients on the
basis of the f nal energy containing wavenumber (kE).
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1 INTRODUCTION

With the current level of computer hardware technology, it is not possible in a reasonable amount of time
to simulate the atmosphere nor ocean by resolving all of the scales of motion. Instead one resorts to large
eddy simulation (LES), where only the large-scales are resolved by a computational grid and the smaller
scales are represented by a subgrid-scale (SGS) parameterisation. The present work is devoted to the
development of such models, which are representative of the SGS processes in both the atmosphere and
ocean. Typically the SGS processes are represented in an adhoc fashion, with tuning parameters manually
adjusted for each simluation. Here, however, we adopt the SGS modelling approach of Frederiksen and
Kepert (2006), where the model coeff cients are derived self-consistently from higher resolution direct
numerical simulation (DNS). The stochastic SGS model consists of a backscatter noise term and a drain
eddy viscosity. The aim of this study is to identify a set of universal scaling laws that represent the eddy
viscosity and stochastic backscatter. This would remove the need to produce the high resolution DNS.
The paper is organised as follows. Section 2 presents a two-level quasi-geostrophic model, which is used
to simulate the atmospheric and oceanic f ows. These f ow f elds are discussed in section 3. Section 4
presents how the SGS model coeff cients are determined from the DNS statistics, using the SGS mod-
elling approach of Frederiksen and Kepert (2006). This approach is then applied to both the ocean and
atmosphere data in section 5. The manner in which these model coeff cients change with resolution is
identif ed, and the scaling laws are presented. Finally concluding remarks are made in section 6.

2 QUASI-GEOSTROPHIC SPECTRAL EQUATIONS

We employ the two-level quasi-geostrophic model of Frederiksen (1998). The numerical integration
of which is an eff cient means of simulating geophysical f ows, and captures the essential dynamics of
baroclinic and barotropic instabilities. In the present study the vorticity is represented on two discrete
vertical levels, with j = 1 representing the upper level at 250hPa, and j = 2 the lower level at 750hPa.
The system is non-dimensionalised by using the radius of the earth (a = 6371km) as a length scale, and
the inverse of the earth’s angular velocity (Ω = 7.292× 10−5s-1) as a time scale. By default all variables
are assumed to be non-dimensional while the dimensional quantities are denoted by the˘modif er.
The potential vorticity equation is spectrally discretised by expanding the f eld variables in spherical
harmonics with the zonal (longitudinal) wavenumber, m, and the total wavenumber, n. This results
in the prognostic equations for the reduced potential vorticity spectral coeff cients, qjmn = ζjmn +
(−1)jFL

(
ψ1
mn − ψ2

mn

)
, where the superscript j on the f ow variables denotes the level, FL is the layer

coupling parameter, ζjmn = −n(n + 1)ψj
mn are the spectral coeff cients of the vorticity, and ψj

mn the
streamfunction coeff cients. The evolution equation for qjmn is

∂qjmn
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= i

∑

pq

∑

rs

Kmpr
nqs ψ
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−pqq
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−rs − iωmnζ

j
mn − αj
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j
mn − qjmn)−Djj

0
(n)qjmn , (1)

where summations in (1) are over the triangular truncated wavenumber set

T = [ p, q, r, s | − T ≤ p ≤ T , |p| ≤ q ≤ T , − T ≤ r ≤ T , |r| ≤ s ≤ T ] , (2)

with T the DNS truncation wavenumber. The Rossby wave frequency is ωmn = −Bm/(n(n+1)), where
B = 2 under the chosen scaling. The drag at each level is given by αj

n. The interaction coeff cientsKmpr
nqs

are detailed in Frederiksen and Kepert (2006). The model is driven toward the mean state q̃jmn, at a rate de-
termined by the relaxation parameterκn. The bare dissipation is given byDjl

0
(n) = δlj D

jj
0
(T ) (n/T )

ρj
0 ,

where δlj is the Kronecker delta function, which ensures the off-diagonal elements of Djl
0
(n) are zero.

Here Djj
0
(T ) is the value of the diagonal elements at truncation and ρj

0
determines the steepness.

3 CHARACTERISATION OF THE FLOW FIELDS

We simulate typical large-scale atmospheric and oceanic f ows. For the atmospheric cases the mean state
q̃jmn corresponds to large-scale westerly jets in the mid-latitudes of each hemisphere, and for the ocean
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q̃jmn is representative of the Antarctic Circumpolar Current. In both cases the mean state is purely zonal
with q̃jmn = 0 unless m = 0. For m = 0 and n ≤ 15 the relaxation time (1/κ̆n) is 11.6 days for the
atmospheric simulations, and 116 days for the oceanic cases. Form 6= 0 or n > 15 the relaxation param-
eter κn = 0. Further details are presented on the atmospheric mean state in Zidikheri and Frederiksen
(2009), and on the oceanic mean state in Zidikheri and Frederiksen (2010).
The other key difference between the atmospheric and oceanic simulations is the specif ed layer coupling
parameter FL. In the atmospheric cases F̆L = 2.5 × 10−12m-2, corresponding to a Rossby radius of
deformation of r̆R ≡ 1/

√
2F̆L = 4.47 × 105m, and a non-dimensional Rossby wavenumber of kR ≡

rR/a ≈ 14. In the ocean simulations F̆L = 2.5 × 10−10m-2, with r̆R = 4.47 × 104m, and kR ≈ 140.
Note r̆R is an order of magnitude smaller in the ocean, which means that a f ner grid is required to capture
the energy injection at the Rossby wavenumber.
In both cases a constant drag is applied to the energy containing scales n ≤ kE . For the atmosphere
kE = 14, and the drag αj

n has damping times (1/ᾰj
n) of 20 days for level 1 and 5 days for level 2. For

the ocean kE = 50, and the damping times are 40 days for level 1 and 10 days for level 2.
The DNSs presented herein have a truncation wavenumber of T = 504, and are denoted by A504 for
the atmosphere and O504 for the ocean. This is equivalent to 1536 × 768 grid points (in longitude by
latitude), or a resolution of 0.234 degrees, which along the equator corresponds to a grid point every
26km. At this resolution, the energy injection in both cases is resolved as kR ≪ T . The time step size is
∆t̆ = 112s for the atmosphere, and ∆t̆ = 300s for the ocean.
Instantaneous level 1 streamfunction f elds minus the zonal component for the A504 and O504 DNS are
shown in Fig. 1(a) and Fig. 1(b) respectively. The former illustrates dominant structures located in the
mid-latitudes of the northern and southern hemispheres. The latter f gure illustrates dominant structures
in the southern hemisphere, and these vortex structures are also smaller in size compared with the at-
mospheric case. This is consistent with the Rossby radius of deformation being an order of magnitude
smaller in the ocean than in the atmosphere.
The dimensional total wavenumber n kinetic energy spectra for level 1 and 2 are ĕ1(n) and ĕ2(n). Fig-
ure 2(a) shows these spectra for the A504 DNS. The ĕ1 spectra is more energetic than ĕ2, and for n > kR
they both exhibit a constant enstrophy f ux inertial range with an approximate n−3 power law. This
is consistent with the theoretical power law for two-dimensional turbulence of Kraichnan (1967). The
enstrophy f uxes within this region are η̆1 = 1.2×10−15s-3 and η̆2 = 4.3×10−16s-3 for levels 1 and 2 re-
spectively. In non-dimensional form η1 ≡ η̆1 Ω

3 = 3.1×10−3 and η2 ≡ η̆2 Ω
3 = 1.1×10−3. Figure 2(b)

illustrates the spectra for the O504 DNS. These spectra are less energetic in the energy containing scales
as compared to the atmosphere, but still exhibit an approximate n−3 power law for n > kR. The ocean
simulations also exhibits an approximate n− 5

3 slope within the wavenumber range kE < n < kR con-
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Figure 1. The upper level streamfunction f eld minus the zonal component for the: (a) A504 DNS; and
(b) O504 DNS. The colour bars have units of s−1.
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sistent with an inverse energy cascade (Kraichnan, 1967). The constant enstrophy f uxes within the range
n > kR are η̆1 = 1.8×10−15s-3 and η̆2 = 1.4×10−15s-3; and in non-dimensional form η1 = 4.9×10−3

and η2 = 3.6 × 10−3. These enstrophy f uxes are important because Leith (1971) showed that the eddy
viscosity in the enstrophy cascading inertial range is proportional to η1/3j .
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Figure 2. The kinetic energy spectra for the: (a) A504 DNS, with the reference line n−3 for kR < n; and
(b) O504 DNS, with the reference lines n−5/3 for kE < n < kR, and n−3 for kR < n.

4 STOCHASTIC SUBGRID SCALE MODEL

We now apply the stochastic modelling approach of Frederiksen and Kepert (2006) to parameterise the
effects of the subgrid-scale eddies on the resolved scales in LESs. In LESs the resolution is reduced
compared with DNS, and conf ned to the set R with a LES truncation wavenumber TR < T . The subgrid
wavenumber set is def ned as S = T − R. To facilitate a discussion on this decomposition of the
f ow, we let q equal the transpose of (q1mn, q

2
mn) for a given wavenumber pair. In this vector notation

qt(t) = qR
t (t) + qS

t (t), where qt is the tendency (or time derivative) of q. The tendency of the resolved
scales is qR

t , where all triadic interactions involve wavenumbers less than TR. The remainder is the
subgrid tendency qS

t , for which at least one wavenumber component involved in the triadic interactions
is greater than TR. The subgrid tendency is further decomposed into a time averaged f ≡ qS

t and a
f uctuating component q̂S

t . We use the values of f taken from the DNS, and q̂S
t is modelled.

The f uctuating component of the subgrid tendency is represented by the stochastic equation

q̂S

t (t) = −Dd q̂(t) + f̂ (t) , (3)

where Dd is the subgrid drain dissipation matrix, q̂ is the f uctuating component of q, and f̂ is a random
forcing vector. The drain Dd is determined by post-multiplying both sides of (3) by q̂†(t0), integrating
over the decorrelation period τ , and ensemble averaging to produce the least squares approximation

Dd = −

〈∫ t

t0

q̂S

t (σ)q̂
†(t0)dσ

〉 〈∫ t

t0

q̂(σ)q̂†(t0)dσ

〉−1

, (4)

where † denotes the Hermitian conjugate for vectors and matrices. The angled brackets denote ensemble
averaging, with each ensemble member determined by shifting the initial time t0 and the f nal time t =
t0 + τ forward by one time step. The drain eddy viscosity is given by νd = Dd/n/(n+ 1).

The model for f̂ is determined by calculating the nonlinear noise covariance matrix Fb = Fb + Fb
†,

where Fb = 〈f̂ (t) q̂†(t)〉. By post-multiplying both sides of (3) by q̂†(t), and adding the conjugate
transpose of (3) pre-multiplied by q̂(t) yields the Lyapunov or balance equation

〈q̂S

t (t)q̂
†(t)〉+ 〈q̂(t)q̂S†

t (t)〉 = −Dd〈q̂(t)q̂
†(t)〉 − 〈q̂(t)q̂†(t)〉Dd

† +Fb . (5)
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Given that Dd is known, Fb can now be calculated. The formulation is general, and f̂ is calculated based
on being coloured noise. After calculation of Fb, however, we f nd that it is suff cient to model f̂ as the
white noise process 〈f̂ (t) f̂†(t′)〉 = Fb δ(t− t′). To represent the backscatter in a similar manner to the
drain, the backscatter eddy viscosity is given by νb = Db/n/(n+1) = −Fb〈q̂(t)q̂

†(t)〉−1/n/(n+1).
The evolution equation for qjmn in the LES is equivalent to that of the DNS in (1), with the addition of the
SGS tendency

(
qSt
)j
mn

to the right-hand-side, and solved over the wavenumber set R instead of T. The
SGS tendency is represented using (3).

5 EDDY VISCOSITY RESULTS

The SGS model coeff cients are now determined from the statistics of the DNS using the approach outlined
in the previous section. Firstly for the atmospheric case, the A504 DNS is truncated back to an LES
truncation wavenumber of TR = 63. For each wavenumber pair all of the required coeff cients are
determined, with the upper diagonal component of the drain eddy viscosity ν11d , illustrated in Fig. 3(a).
These coeff cients are positive, increase according to a power law in n, and for a given n are weakly
dependent upon m. The ν22d component has a similar structure, and the off-diagonal terms ν12d and ν21d ,
are negligible in comparison. The drain eddy viscosity is isotropised by averaging over m and plotted
against n in Fig. 3(c). This clearly illustrates a cusp-like form. The truncation procedure is repeated for
TR = 126 and TR = 252, with the isotropised prof les also included in Fig. 3(c). A comparison of these
prof les identif es that as the LES resolution increases the maximum value of the drain prof les decreases.
The backscatter coeff cients also have similar properties to νd.
Likewise the O504 DNS is truncated back to TR = 63, with the ν11d component illustrated in Fig. 3(b).
As in the atmospheric case, these coeff cients increase with n, but here have a signif cant dependence
upon m. Some of the coeff cients centred at (m,n) = (15, 20) are also negative. The ν22d component
also has a similar structure to ν11d . In this case the off-diagonal terms are signif cant, and mainly negative
throughout the (m,n) wavenumber plane. The truncation is repeated for TR = 126 and TR = 252,
with the isotropised prof les plotted in Fig. 3(d). Consistent with the observations of the atmospheric
results, as the LES resolution increases the maximum value of the drain prof les decrease. In addition,
as the resolution increases, the negative component disappears, and the off-diagonal terms become less
signif cant.
For both the ocean and atmosphere simulations, the wavenumber range over which the eddy viscosities
are non-zero is related to the last energy containing wavenumber kE . Kraichnan (1976) states that the
signif cantly non-zero values of the eddy viscosity are concentrated among the last kE wavenumbers
before truncation. This means that SGS nonlinear interactions are signif cant within the range TR− kE .

n ≤ TR. We are primarily concerned with the approximate lower bound TR − kE . Recall that for the
A504 DNS the last of the energy containing scales occurs at kE ≈ 14, and the Rossby wavenumber
kR ≈ 14. For all of the atmospheric truncations in this study TR − kE > kR, which means the SGS
nonlinear interactions are conf ned to within the self-similar enstrophy cascading range. This is not
the case for all of the ocean truncation levels. In the O504 DNS kE ≈ 50, and kR ≈ 140. For the
TR = 252 case, TR − kE > kR and the SGS nonlinear interactions are again conf ned to within the
region of constant enstrophy f ux. This explains why the isotropic prof le of the TR = 252 ocean case in
Fig. 3(d), qualitatively resembles the atmospheric prof les in Fig. 3(c). The eddy viscosity prof le for the
TR = 126 ocean case has a different structure because TR − kE < kR. This means there are signif cant
SGS nonlinear interactions within the wavenumber region kE < n < kR, and here the enstrophy f ux is
not constant. The physics within this region, however, are still self similar and more complicated scaling
laws could possibly be developed for truncations made within this wavenumber range. The coeff cients
for the TR = 63 ocean case have a different structure again because TR − kE < kE , which means there
are signif cant interactions with the energy containing scales themselves. It is unlikely that scaling laws
could be developed for these truncation levels as the energy containing scales are problem specif c.
The diagonal components of the isotropic drain eddy viscosity prof les are characterised by least squares
f tting them to the power law νjjd (n) = νjjd (TR) (n/TR)

ρj

d , where νjjd (TR) is the value at truncation on
level j. The parameter ρjd controls the steepness of the prof le, and hence the width of the non-zero eddy
viscosity region in wavenumber space. Since the width of this region is proportional to kE , ρjd is plotted
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Figure 3. Drain eddy viscosity anisotropic coeff cient ν11
d
(m,n) for the: (a) A504; and (b) O504 DNS,

both truncated back to TR = 63. Isotropic coeff cient ν11
d
(n) for the: (c) A504; and (d) O504 DNS,

both truncated back to TR = 63, 126, and 252. Isotropic scaling laws for the: (e) maximum value
νjj
d
(TR); and (f) power exponent ρj

d
, of the diagonal components with the least squares line f t only to the

atmospheric data points. Note the key in (f) also represents the data in (e). The vertical lines within (e)
and (f), represent estimated truncation thresholds TR/kE = (kR + kE)/kE , above which all signif cant
SGS nonlinear interactions occur within the constant enstrophy cascading range, and the labels A and O
representing the atmospheric and oceanic thresholds respectively.
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against TR non-dimensionalised by kE in Fig. 3(f). The diamond symbols represent the atmospheric data,
circles the ocean, the hollow symbols are for level j = 1, and f lled symbols for j = 2. The dashed vertical
lines represent the estimated truncation thresholds above which all signif cant SGS nonlinear interactions
occur within the constant enstrophy cascading range; that is TR/kE = (kR + kE)/kE , with the labels A
and O representing to atmospheric and oceanic thresholds respectively. Note all of the atmospheric LESs
are greater than this threshold; however, this is not the case for the ocean. A trend line is, therefore, only
f tted to the atmospheric data producing the equations

ρjd = 5.2(TR/kE)
0.91 , and ρjb = 9.1(TR/kE)

0.91 , (6)

where ρjb is the analogous power exponent for the backscatter eddy viscosity νb. Only the TR = 252

ocean case is in the enstrophy cascading range, and its value of ρjd in (6) is consistent with the atmospheric
data. The maximum value νjjd (TR) is plotted in Fig. 3(e) scaled by η−1/3

j to collapse the data between
levels (see section 3), and non-dimensionalised by kE to collapse the atmospheric and oceanic data. A
trend line is f tted to the atmospheric data, producing

νjjd (TR) = 0.88(TR/kE)
−1 , and νjjb (TR) = −0.43(TR/kE)

−1 , (7)

where νjjb (TR) is the value at trunction for νb. The TR = 252 ocean points agrees with the atmospheric
data, and the lower resolution ocean cases do not. The lower resolution oceanic LES data points also
begin to separate between levels, which indicates that the enstrophy f ux scaling does not hold outside
of the constant enstrophy f ux region. In Kitsios et al. (2011) these scaling laws are used for the LES of
atmospheric f ows, and are shown to replicate the kinetic energy spectra of DNS.

6 CONCLUDING REMARKS

The scaling laws presented within, make the SGS parameterisations more generally applicable in LESs as
they remove the need to generate the model coeff cients from a high resolution DNS. Scaling laws for
νd have been made applicable to simulations of both the atmosphere and ocean by non-dimensionalising
them on the basis of the last energy containing wavenumber kE . The scaling laws are currently valid for
LES truncations made within the constant enstrophy cascading range, such that TR > kR+kE . Additional
scaling laws are currently being developed for LES truncations made within the range kE < TR < kR.

ACKNOWLEDGEMENT

V. Kitsios acknowledges the CSIRO Off ce of the Chief Executive for funding his post-doctoral position.

REFERENCES

Frederiksen, J. S. (1998). Precursors to blocking anomalies: the tangent linear and inverse problems.
J. Atmos. Sci. 55, 2419–2436.

Frederiksen, J. S. and S. M. Kepert (2006). Dynamical subgrid-scale parameterizations from Direct
Numerical Simulations. J. Atmos. Sci. 63, 3006–3019.

Kitsios, V., J. Frederiksen, and M. Zidikheri (2011). Subgrid model with scaling laws for atmospheric
simulations. under review.

Kraichnan, R. (1967). Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423.

Kraichnan, R. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536.

Leith, C. E. (1971). Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28, 145–
161.

Zidikheri, M. J. and J. S. Frederiksen (2009). Stochastic subgrid parameterizations for simulations of
atmospheric baroclinic f ows. J. Atmos. Sci. 66, 2844–2858.

Zidikheri, M. J. and J. S. Frederiksen (2010). Stochastic subgrid-sacle modelling for non-equilibrium
geophysical f ows. Phil. Trans. Royal Soc. A 368, 145–160.

564




