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Abstract: In military operations, logistics distribution involves the transportation of equipment, people 
and sustainment (resources) to various physical locations, known as distribution nodes. The quantity of items 
being transported is often very large and the resources need to be moved as quickly as possible using the 
available transportation assets. A complicating factor is that the airports at the distribution nodes typically 
have a limitation on the number of aircraft that can be present at one time. This is known as a Maximum on 
Ground (MOG) constraint. 

In simple cases, the MOG problem can be overcome by waiting for aircraft spots to become free. However in 
larger scenarios where there are more aircraft and more movements, there is a greater likelihood of 
congestion. In these cases waiting can cause deadlocks, where an aircraft is unable to move because it relies 
on another aircraft moving first. Starvation can also arise when an aircraft is indefinitely waiting for a spot to 
become free, but other aircraft are continually using it. This paper presents a Maximum on Ground Algorithm 
(MGA) for dealing with deadlock and starvation, and resolving congestion in highly constrained scenarios. 

The MGA uses a combination of heuristics to overcome congestion and find solutions in the presence of 
MOG constraints. For example, consider the scenario shown in Figure 1. In this case there is only one MOG 
spot at each airport, so movement between airports is very constrained. The MGA uses the forced move, 
swap and shuffle heuristics to assist a task 
aircraft in completing its movement. This is 
accomplished by reorganizing the other 
aircraft in the scenario, so that the task aircraft 
can reach its destination without violating any 
MOG constraints.  

Each of these heuristics provides a unique way 
of reorganizing the scenario, which is 
applicable in a particular set of cases. On the 
other hand, the multi-shuffling heuristic 
focuses on assisting the task aircraft by 
identifying a utility aircraft to provide 
assistance. The MGA identifies the constraints 
in a given scenario, and determines the best 
combination of heuristics to apply in order to 
overcome those constraints and find a solution. 

A series of trials have demonstrated that the 
MGA is computationally efficient, capable of quickly solving moderate to large scenarios. The most 
computationally intensive heuristic is multi-shuffling, which involves each aircraft sending a request to every 
other aircraft. This results in a quadratic worst-case time complexity for the algorithm. In addition to rapid 
computation, the MGA produces efficient solutions by coordinating aircraft so that each task can be 
completed as quickly as possible without violating any MOG constraints. This is particularly true for the 
simpler cases, where the algorithm is able to achieve near-optimal efficiency. 
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Figure 1. A scenario with numerous MOG constraints
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1. INTRODUCTION 

Logistics distribution in the military domain involves the rapid transportation of large quantities of 
equipment, people and supply items to one or more locations (Morton et al., 1995). The distribution is carried 
out using a combination of transport platforms, encompassing air, rail, road and sea. The nodes used to 
facilitate movement via these platforms become one of the key bottlenecks of distribution, and are often 
restricted in the number of aircraft spots available for use. This problem is known as Maximum on Ground 
(MOG) (Stucker and Berg, 1998). MOG can lead to conflicts arising in aircraft movement, so there need to 
be strategies in place for managing congested airports. 

The MOG problem has many similarities to combination puzzles, particularly Rush Hour. The goal of Rush 
Hour is to move a target car outside of a grid, but movement through the grid is restricted by the presence of 
other cars (Flake and Baum, 2002). Similarly with a MOG scenario, an aircraft must move to a target airport 
and there are restrictions on where it can move. A generalized version of Rush Hour has been proven to be 
NP-hard (Flake and Baum, 2002), implying that there is no algorithm for finding an optimal solution in 
polynomial time. Furthermore, we are not aware of any algorithms in the literature that can optimally solve 
our specific MOG problem. For these reasons we have chosen to develop a heuristic algorithm. 

Although minimal congestion can be resolved using simple techniques, such as waiting for an aircraft spot to 
become free, the same methods fail to provide solutions for highly constrained scenarios. When there are 
multiple congested airports and aircraft needs to make a delivery to one of those airports, simply waiting is 
unlikely to solve the problem and could result in deadlocks, where an aircraft is unable to move because it 
relies on other aircraft moving first. The heuristic algorithm described in this paper provides techniques for 
avoiding deadlock and overcoming other problems that arise in highly congested scenarios. The scope of the 
MOG problem is limited to aircraft, but other transport modes, such as maritime assets, could potentially face 
similar problems. The approaches and techniques discussed may be applicable to these other platforms. 

2. RELATED WORK 

The problem of aircraft flight scheduling is an ongoing area of research. Recent work continues to examine 
better ways of scheduling aircraft to maximise the efficiency of aircraft movement. For instance, Grosche 
(2009) explores the use of computation intelligence to improve airline scheduling, while Saraf and Slater 
(2008) use dynamic scheduling in an attempt to better manage the arrival of aircraft at congested airports. 
These approaches focus on improving the efficiency of airline schedules and maximizing throughput at 
airports. 

The military faces a similar scheduling problem when planning airlift operations as part of distribution. The 
goal of these operations is to deliver resources (equipment, people and supply items) to a distribution node as 
quickly as possible, which means utilising all available air assets. However, the node’s airport will potentially 
have limited capacity for aircraft (Stucker and Berg, 1998) and thus, the simultaneous use of many air assets 
can create a significant MOG problem (Gordon and Orletsky, 2003). 

A number of mathematical models and algorithms have been developed to assist with planning airlift 
operations and resource distribution (Morton et al., 1995; Crino et al., 2004). These algorithms are 
deterministic and strive to find an optimal solution to the problem to inform the planner on how transport 
assets could be used to complete the distribution (Wu et al., 2009). Maximum on Ground is acknowledged as 
a significant problem in constructing a distribution model (Morton et al., 1995), and some models provide 
strategies for dealing with MOG. For example, Wu (2005) describes several MOG congestion functions that 
provide mechanisms for assigning airbases to aircraft in the presence of hard and soft MOG constraints. 

3. PROBLEM OVERVIEW 

The approach described in this paper has been developed and tested in a simulation environment for 
distribution planning. Unlike a mathematical model, the environment is founded on fewer assumptions, 
replacing them with real-world data to potentially improve the accuracy of the planning. Additionally, the 
simulation tool does not strive to find the optimal solution, only a reasonable solution that represents one 
possible realistic outcome. 

In this simulation environment, Maximum on Ground is modeled as a hard constraint, where each location 
has a physical limit on the number of spots available for aircraft, and this limit cannot be exceeded. 
Consequently, decisions made in the earlier parts of the simulation can significantly influence the overall 
outcome. For instance, an aircraft movement at the start of the simulation can congest an airport and prevent 
aircraft from being able to land at that location during later movements. 
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This representation of MOG leads to many questions regarding resource distribution and aircraft movement. 
Firstly, how does one determine the best aircraft to use for distributing a resource? An aircraft that initially 
seems like the best option may result in a significantly worse overall solution due to a MOG constraint. 
Furthermore, what happens when an aircraft needs to land at a base that is full? The aircraft could potentially 
wait, but there is no guarantee that a spot will become free, so the aircraft may be forced to wait indefinitely. 
Another possibility is that an aircraft from the congested base moves to another base to free-up a spot, but 
where exactly does this aircraft go? 

4. THE MAXIMUM ON GROUND ALGORITHM 

The Maximum on Ground Algorithm (MGA) provides a general approach for dealing with MOG focused on 
solving highly congested scenarios. In a congested scenario, the number of aircraft approaches the total 
number of available MOG spots, making it very difficult for aircraft to move. The MGA uses a combination 
of heuristics to avoid deadlock and overcome congestion in these scenarios. Although the heuristics do not 
solve every single MOG problem, they can be used effectively in a large number of cases. Given a scenario, 
the MGA takes the following steps each time an aircraft needs to reach an airport: 

1. If the aircraft is trying to reach an airport that is full, apply the Forced Move heuristic. 
2. If the Forced Move heuristic doesn’t find a solution, apply the Swapping heuristic. 
3. If the Swapping heuristic doesn’t find a solution, apply the Shuffling heuristic. 
4. If the Shuffling heuristic doesn’t find a solution, apply the Multi-shuffling heuristic. 
5. If the Multi-shuffling heuristic doesn’t find a solution, then the MGA has failed to find a solution. 

The details of each heuristic are described in the following sub-sections. The order in which the heuristics are 
applied reflects their overall impact on the scenario. For example, Multi-shuffling is considered to have the 
most impact, because a solution produced by Multi-shuffling will generally involve more aircraft movement 
than solutions produced by the other heuristics. Therefore, Multi-shuffling would be applied as a final option. 

The MGA heuristics are described in reference to a series of scenarios. Each scenario is modeled as a 
weighted directed graph, with airports represented as nodes, and routes represented as links. The weight of 
the links reflects the distance between the airports, and each aircraft has a maximum range that it can fly. 
Each time an aircraft arrives at an airport, its refills its fuel tank. Therefore, an aircraft can continue to fly 
indefinitely between airports, assuming that it has enough range to traverse the links. The model that we have 
adopted is based on our interpretation of the MOG problem, as derived from abstractions in the literature. 

4.1. Forced Move 

When an airport is full and an incoming 
aircraft needs to land there, the incoming 
aircraft can force one of the other aircraft to 
move. This approach can be used to solve the 
scenario in Figure 2, where Aircraft 1 needs to 
get to Sydney, but the only spot available in 
Sydney is being used by Aircraft 2. The 
solution is for Aircraft 1 to force Aircraft 2 to 
move out to Brisbane. However, if there was 
another aircraft in Brisbane and that aircraft 
had nowhere to move, then Aircraft 2 couldn’t 
move to Brisbane, and consequently, Aircraft 
1 would not be able to get to Sydney.  

4.2. Swapping 

Another approach that can be used even when all airports are full is known as swapping. The aircraft that 
needs to move can attempt to swap with one of the other aircraft already located at the destination airport. In 
order to perform the swap, both aircraft must be able to traverse the route between the airports and 
successfully land at the other airport. 

This approach can be used to solve the scenario in Figure 3, where Aircraft 1 needs to get to Sydney, but the 
only spot available in Sydney is being used by Aircraft 2. The solution is for Aircraft 1 to swap with Aircraft 
2, enabling it to reach Sydney. 
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4.3. Shuffling 

Although the Figure 3 scenario can be solved 
with swapping, this heuristic doesn’t always 
work. For instance consider Figure 4, which 
contains a scenario with a three-way deadlock. 
In this case, Aircraft 1 needs to get to Sydney, 
but Aircraft 2 is using the only spot available in 
Sydney. Aircraft 1 and 2 can’t swap because the 
routes in this scenario are unidirectional. In the 
military context, one-way routes can exist in the 
presence of a diplomatic clearance, which 

creates restrictions on aircraft movement. 

Due to these unidirectional routes, the only way for a transport to move in this scenario, is for all transports to 
move simultaneously (referred to as shuffling). In the Figure 4 scenario, the shuffle involves Aircraft 1 
moving to Sydney, Aircraft 2 moving to Brisbane and Aircraft 3 moving to Adelaide. This results in Aircraft 
1 reaching its destination and exactly one aircraft at each airport, meaning that MOG has not been exceeded. 

4.4. Multi-shuffling 

The shuffling heuristic can resolve deadlocks that 
have a one-step solution, such as the scenario in 
Figure 4, but in some cases (see Figure 5) 
deadlock can only be resolved through a series of 
steps. In this scenario, Aircraft 1 needs to reach 
Sydney, but Sydney is full. Aircraft 1 would 
normally attempt to swap with Aircraft 2, but 
Aircraft 2 lacks the range to perform the swap. 
However, there is another aircraft in the scenario 
(Aircraft 3) which has sufficient range to swap 
with Aircraft 1, but is not located in Sydney and 
thus is unable to perform the swap. 

One solution to this problem would be for 
Aircraft 3 to swap with Aircraft 2, and then once 
Aircraft 3 is in Sydney, it can swap with Aircraft 

1, allowing Aircraft 1 to reach its destination. 
Although this seems like an intuitive solution, the 
action of Aircraft 3 swapping with Aircraft 2 has 
no direct utility in satisfying the goal, which is for 
Aircraft 1 to move to Sydney. 

To overcome this problem, the multi-shuffling 
heuristic can be applied. This approach identifies a 
utility aircraft in the scenario that can assist the 
aircraft that is performing the movement. In the 
Figure 5 scenario, Aircraft 3 is identified as the 
utility aircraft and needs to assist Aircraft 1. The 
utility aircraft is then given the goal of reaching a 
base from which it can assist Aircraft 1. 
Consequently, Aircraft 3 moves to Sydney by 
performing a swap with Aircraft 2, from where it 
can assist Aircraft 1 in completing its movement. 

4.5. Trapping 

Some deadlocks have very specific solutions, and if that solution isn’t used, the deadlock can become 
irreparable. For instance, Figure 6 shows a scenario that can result in a situation referred to as trapping. 
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Figure 4. All three aircraft must move at once 
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In this case, Aircraft 1 is loading in Adelaide 
and Aircraft 2 is idle. Aircraft 3 needs to get to 
Sydney and therefore tries to force Aircraft 2 to 
move out of Sydney. The only free airport is 
Brisbane. However, if Aircraft 2 moves to 
Brisbane, it has no way of returning to Sydney, 
because it lacks the range to traverse the path 
from Townsville to Sydney. This situation is 
known as trapping. 

To avoid trapping, Aircraft 3 must not force 
Aircraft 2 to move to Brisbane. It must wait for 
Aircraft 1 to finish loading, and then allow 
Aircraft 1 and 2 to swap. Once Aircraft 1 is in 
Sydney, Aircraft 3 can force Aircraft 1 to move 
to Brisbane without any possibility of trapping. 
In spite of this, if Aircraft 2 never needs to 
return to Sydney, then moving to Brisbane may 
not be an issue. 

5. TRIALS AND RESULTS 

A series of trials have been run to assess the efficiency and optimality of the Maximum on Ground algorithm. 
The efficiency is concerned with how quickly the algorithm finds a solution, while the optimality is a 
measure of how good that solution is in relation to the optimum. 

5.1. Brute Force Algorithm (BFA) 

In order to benchmark the MGA, a Brute Force Algorithm (BFA) has also been developed. The BFA 
attempts to solve the MOG problem by looking at every possible solution in order to find the optimum. At 
each time step, the BFA identifies every possible move that can be made by every aircraft in the scenario, 
and models each of them as a state. The algorithm then searches for all states that can be reached from each 
of the generated states and repeats this process recursively. If a generated state is deemed to be inefficient, it 
is pruned and the algorithm doesn’t explore that branch any further. The BFA continues searching until all 
states have been examined or pruned. 

The time step affects how frequently the state tree is expanded, which will have an impact on solution 
optimality and the time it takes to find that solution. Both algorithms use minutes as their base time unit, so 
with a time step of one minute, the BFA will expand the state tree and branch further every minute. If the 
scenario occurs over the course of a day, using a time step of one will result in a very large state tree and 
become computationally infeasible. Thus, a time step of 60 minutes has been selected for the following trials. 

5.2. Computational Efficiency 

The efficiency of the MGA was compared to the BFA in six scenarios of increasing complexity. In each 
scenario a number of tasks need to be completed, which involve moving items between two locations. Table 
1 shows the computation time of both algorithms for each scenario, along with the heuristics used by the 
MGA and the number of solutions examined by the BFA to find the best solution. The swapping, shuffling 
and multi-shuffling heuristics are abbreviated as SW, SH and MS respectively. The upper part of the table 
shows the number of variables, giving an indication of scenario complexity. The MOG limit of all airports is 
1, indicating a high degree of congestion across all scenarios. 

From Table 1, it can be seen that the MGA requires minimal computation time, even as the size of the 
scenario increases. Out of the MGA heuristics, multi-shuffling is the most computationally intensive, because 
it involves each aircraft requesting every other aircraft for assistance with the movement. Thus, the highest 
order term is the number of aircraft, and using asymptotic analysis, we derive that the MGA has a quadratic 
worst-case time complexity: 

)()( 2NnT Ο=      where N is no. of aircraft 
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Table 1. Computation time of MGA and BFA in different scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Airports, A 2 3 4 5 9 12 

Aircraft, N 2 3 4 4 6 9 

Tasks 1 1 1 1 4 9 

Duration (minutes) 271 403 678 755 4358 8849 

 Maximum on Ground Algorithm 

Computation Time 3.1 ms 4.2 ms 6.3 ms 6.6 ms 47 ms 182 ms 

Heuristics Used SW SW, SH SW, MS SW, SH SW SW, SH, MS 

 Brute Force Algorithm 

Computation Time 3.5 ms 22.1 ms 1.9 seconds 28.1 seconds -1 -1 

Solutions Examined 8 1,166 181,288 2,832,452 - - 

There are other variables that will influence the computational complexity of the MGA, such as the number 
of airports, but they are lower order terms so they will have no impact on the worst-case complexity. In 
contrast, the BFA requires progressively more computation time, because an increase in the number of 
variables causes the time complexity to increase at double exponential time. This results in larger scenarios 
having enormous completion times, such as Scenarios 5 and 6 which did not complete after running for 48 
hours. Assuming N is the number of aircraft and A is the number of airports, the worst-case time complexity 
of the BFA can be expressed as: 

)()(
RANnT Ο=      where

Timestep

Duration
R =  

The actual time complexity of the BFA will be smaller, because the algorithm generates every possible state, 
but only branches further from states that are deemed to be efficient, resulting in a smaller state tree and a 
lower computation time. Nonetheless, as shown in Table 1, a slight increase in scenario complexity results in 
double exponential growth of the computation time, suggesting that the BFA is not feasible to use in 
moderate or larger scenarios. 

5.3. Algorithm Optimality 

In addition to computational efficiency, the MGA was assessed on the optimality of the solutions that it 
produced, by comparing it to the best solution found by the BFA, given the chosen time step of 60 minutes. 
The optimality is a measure of the total time that aircraft spent flying between airports. Therefore, a solution 
is deemed optimal if the scenario was successfully solved and the aircraft movement was minimal. Figure 7 
shows a comparison of MGA and BFA for the same scenarios that were used in the efficiency analysis 
(Section 5.2). Scenarios 5 and 6 are not included, because the BFA wasn’t able to find a solution in a 
reasonable time. 

 

0

500

1000

1500

2000

2500

3000

3500

Ai
rc

ra
ft

 M
ov

em
en

t 
(t

ot
al

 fl
yi

ng
 ti

m
e 

in
 m

in
ut

es
)

1 2 3 4

Scenario

BFA

MGA

 
Figure 7. A comparison of algorithm optimality (less aircraft movement is better) 

                                                           
1 Did not complete after running for 48 hours 
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Figure 7 shows that the MGA can produce near-optimal solutions in smaller scenarios, but becomes less 
efficient as the size of the scenario increases. The most notable inefficiencies can be seen in Scenario 3, 
where the MGA employs the multi-shuffling heuristic (refer to Table 1). This suggests that the multi-
shuffling heuristic could be an area for further research and development. 

6. DISCUSSION AND CONCLUSIONS 

The different scenarios demonstrate that the MGA is a computationally efficient algorithm with a quadratic 
worst-case time complexity. This also means the algorithm is very scalable, being able to find solutions to 
MOG-constrained scenarios of varying size without significant increases to the computation time. 
Furthermore, the solutions produced by the MGA are quite efficient, although there are a several areas where 
they could be improved. 

One area of optimization is the multi-shuffling heuristic, which currently only considers the closest valid 
aircraft for its choice of utility aircraft. However there may be other aircraft in the scenario that may be more 
suitable for providing assistance. The choice of aircraft could improve the optimality of the solution, but 
finding the best aircraft will result in increases to the computation time. 

Inefficiency also exists in the way the heuristics are applied. For example, the aircraft that are involved in a 
shuffle currently start moving at the time when the shuffle is activated. Aircraft can potentially pre-empt the 
actions of other aircraft and begin moving earlier, which would minimise aircraft movement in the scenario. 
All heuristics suffer from this problem so pre-emptive movements could provide significant benefits to 
overall solution optimality.  

Finally, there are MOG-constrained scenarios that the MGA is unable to solve, due to the complexity of the 
steps required to reach the solution. Additional heuristics could be developed for these scenarios, but the 
cases are very specific and would rarely arise in the real-world. Given their rarity, these cases could simply 
be handled by a human operator. Therefore, the key area for future work is improving the solutions produced 
by the algorithm, so that MOG problems are resolved as efficiently as possible. This may also provide a 
better representation of the way in which MOG is handled in the real-world. 
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