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Abstract: This paper describes the detection and tracking of static and dynamic underwater object(s). It 
addresses the case study application of a multi-layer artificial neural network prototype model on the bases of 
an analytical approach. It supports an Autonomous Underwater Vehicle (AUV) robot’s controller system 
with automated detection of processed-obstacle-signals. The significance of this work is to investigate the 
neural network learning perception process of signal detection within operational environments. In this case, 
the acoustic-sound density is the source of detection and classification processes. The outcomes of this work 
are presented as simulated results that illustrate the error-detection control system. It activates due to a range 
of training forces originating from encountered acoustic-sensors’ signals. In addition, the benefit of further 
simulation of the proposed technique can provide sufficient knowledge on the set-up of the controller’s cyclic 
triggering towards actuators. The other benefits are included with control overshoot and rotational alignment 
of thrusters for precise navigational trajectory in real-time.   
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1. INTRODUCTION 

This paper proposes an investigation into the development (model, design and operation) of an artificial 
neural network to perform as an AUV robot’s controller automated detection system application using treated 
real-time acoustic signatures. In general, the parameter-estimation within a cyclic-system-identification 
process is a principle factor for control-system design, in particular for sensitive systems with real-time 
adaptive or non-adaptive control-system duties.  

As Madkour et al. (2004) revealed, the accurate and consistent parameter-estimation technique is essential for 
the design and development of high performance control systems in which the estimated parameters are often 
used in the field orientation, motion control, self-sensing and other advanced algorithms. In many cases of 
AUV robot’s real-life applications, it is not possible to update parameters within a time-domain slot between 
successive samples. Therefore it is essential to apply a clear-cut algorithm for real-time execution.    

A case study has been considered to demonstrate the capabilities of algorithms to simulate detection and 
classification (Anvar 1999) with real-time system identification. In this paper the authors propose a flexible 
prototype model implemented using real-time signatures. 

The model has up to ten inputs (input layer), a hidden-layer (with optional choice of 2 or 4 nodes setting (i.e. 
explicitly, there are two hidden nodes decided and tested for the present scenario) and output layer (with 
alternative of one to three outputs depending on the application type) in real-time. Where needed, the number 
of inputs and outputs can be changed or extended in the future.  

Furthermore, the system has been tested and validated for real-time state-identification and classification 
within the simulation framework. To demonstrate the capabilities of the algorithms and the system 
applications several real-time simulation scenarios have also been tested and the results are presented. In 
addition, the model provides an explicit control on the trade-off to achieve the true-model. 

2. TARGET TRACKING AND DETECTION SYSTEM  

The qualitative automated detection control system should have the ability to sense its environment, process 
information, reduce uncertainty, plan, 
generate and execute (e.g. detect, classify 
and inform AUV robot’s controller) in real-
time (see Figures 1 & 2). Alternatively, the 
robust-system should be capable of handling 
various tasks within its environment. 
Depending on its applications, the other 
features would be an online and/or off-line 
learning ability. For the real-world 
application when AUV is engaged with real-
time tasks, the system should be pre-trained 
and non-adaptive. To be on the safe side, a 
real-time on-line training scheme in some 
cases may cause dramatic effects so as to 
exceed robustness limits.  

 

 
Figure 2:   An AUV Robot’s Automated Detection and Control Navigation System Processing Diagram 

       
Figure 1:   AUV Robot test-bed and Expected Directional 

Sensors Response. 
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3.   MULTI-LAYER PERCEPTRON ARCHITECTURE  

The artificial neural networks are well known in learning separable-functions, which can often be identified 
as step-function-units, particularly when the multi-layer network is fairly large. They can be engaged in the 
learning process of multi-tasks. However, the learning algorithm can be derived analytically, using 
differential calculus. In this arrangement 
a differentiable threshold function plays 
a major-role and in most cases it can 
perform effectively and accurately.  

 

In general the neural network is 
integrated with several inputs joined to a 
summing function by various 
coefficient-weights (see Figure 3). The 
outcomes of this operation is presented 
as the following expression, where the 
input vector is ix  (i=1:n) and iw  
symbolizes the coefficient-weight that 
connects ith input to the corresponding 
neuron in the next hidden layer.  

 

)*( ii wxy ∑=          (1) 

The signals are then transmitted through a non-linear-function or sigmoid-operator after the weighted input is 
summed, to form the output at the hidden layer. 

The activation function (sigmoid-units) has been well used as an alternative unit with similar property to the 
step function. The general form of the sigmoid function is presented in the following relation, where x is the 
input real-value,  

xx e−+
=

1
1ρ                 (2) 

Where ρ  is in the range from 0 to 1. The term xe −  cannot become negative, so when the function xρ  
denominator becomes a large value (infinite), it increases in negative direction (turn towards 0). It also 
inclined to 1 towards positive direction when xρ  denominator becomes 1.  

In reality the output value would be (+1) if the input is positive-real (x > 0). Likewise the output value would 
be (-1) if the input is negative-real (x < 0).  

There is a similarity between the step-function and sigmoid-function. The following relation represents the 
sigmoid- derivative: 

]1['
xxx ρρρ −=            (3) 

It is obvious that the power of a multi-layer neural net approach is generated as a result of the process within 
the neurons that interact together and by using a training method that can define the paradigm of a multi-layer 
neural networks perception. Alternatively, the network learns the problem “space” as well as cross 
correlation between data connections due to parallel processing that minimises defined error signals.         

4.   Self-Organising Threshold 

An onboard-automated tracking of the object’s location is an essential role of the command and control 
system of intelligent self-motivated robots. These problems usually involve comparing the acquired data-
density against that of the threshold. If the target or the object-situation exceeds a given threshold, it means 
the object is assumed to be within a close range of navigational path. The following relation acknowledges 

the defined activation-function.    ∑
=

=
n

i
ijiy wxS

0
*      (4) 

Figure 3:   The Neural Network System Model (Prototype) 
Architecture. 
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Subsequently, the following levels of discrete-senses (threshold categorization) are the basis of the region of 
the state-space limitations to be used by a dynamic-system: 

θ>yS  

θθ ≤<− yS  

θ≤yS  

Where θ  is a predetermined threshold value (Estebon 1997) & (Howell, et al 2003). 

5.   Training the Network using Backpropagation 

The coefficient-weights-training can be considered by the estimation of the weight changes for a particular 
scenario-trial. In this case, the ka  is measured as an aim-value, ko  that is known as an output unit and kh  is 
identified as the trial-value. The following consecutive terms (5) and (6) would estimate the output-node and 
hidden-node error-rate associated with each unit. 

))(1( kkkkk oaooO −−=∆        (5) 

∑
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The outcomes of the above calculation would act as a source of coefficient-weight-changes within the 
iteration cycle by employing the following relations. 

ijxH xH *∆= µδ        (7) 

Where, xHδ  is the weight change between input-unit ix  and hidden-unit jH  and µ  is the learning rate.  

Therefore, with each iteration-cyclic of xHδ  the coefficient-weight value would be modified (Rumelhart, et 
al 1995). Eventually, the learning rates used for each scenario-trial would be changed only with a short-gape 
of coefficient-weights of each scenario-trial. It is also noticeable that with each learning process the training 
for the previous trial is also included and available.  In addition, the relation (7) can be modified and applied 
for weights between hidden-unit ih  and output-unit jO  as follows:  

ijhO hO *∆= µδ       (8) 

6.   Error Evaluation 

The number of misclassified instances of the multi-layer neural networks can be measured by the estimation 
of the error-rate over a training-set. In most cases due to the network systematic error, there are various 
dramatic instances that may take place. One assumption would be a case of a misfired situation, when the 
output-node value assigns a value close to 1 where the correct output value should be 0 and so on.  

To evaluate the error rate ( RE ), when OA  is defined as an aim-output and OO  is determined as an 
observed-output the following function computes the overall error function (Madkour, et al 2004) & (Shin, et 
al 2002). 

)))()(((
2
1 2∑ ∑

∈

−= kOkAE
outputsk

OOR
       (9) 

However, the backward searching configuration process of the network space is a sensible way to configure 
the coefficient-weight with least error.  

7.   Fitting and Errors Generalisation 

The choices of best fit are governed by various applications of specific features (Yerramalla 2003).  
Alternatively, the process to examine and select a reliable model is involved with fitting among training-set-
error and test-set-error. As presented in Figure 4, the fitting of the two sets capturing the underlying 
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relationship of the true model is evident when the number of training iteration reaches 1200 epochs. This 
phenomenon is possible due to the output relationship of the true model being deterministic and smooth from 
14000 up to 20000 epochs (see Figure 5). However, this figure seems to be a good representative of the true 
model, although, different error rates appear among two sets. Figures 6 & 7 represents the weight changes 
before and after training.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Convergence of V to a stable State within 
1200 epochs of NN Learning. 

Figure 5: Convergence of V to a stable State within 
20,000 epochs of NN Learning. 

  

Figure 6: Input Coefficient-Weights Training 
Weights. 

Figure 7:   Hidden Coefficient-Weights Training. 

Where V on the above figures represents error rate ( RE ). 

8.   CASE STUDY 

A practical case study has been undertaken for better 
understanding of the sensitivity and capability of various 
functions that were used within the given system. Three 
sets of scenario-trials are presented in Figure 8 and 
depict nominal conditions of autonomous detection 
processes of real-time acoustic signals.  

Figure 8, represents AUV robot’s real-time 
environmental situation. The detection-range is 
classified into three regions, (region III is the neutral or 
protected area, region II is the alert zone and region I is 
the close range situation or alarm zone). Where A is the 
position of the AUV robot, B and C are objects at rest 
and D is a moving object.  

Three possibilities are considered: possibility 1 is when 
the, moving object D is directed towards AUV robot 

   
Figure 8: AUV Robot’s Real-time Navigational 

Situation, Simulating three Possibilities.
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with medium or long-range distance to each other (no real threat to the robot).  Possibility 2 is when the AUV 
navigates too close to the object B that is stationed on the seabed.  Possibility 3 is when the moving object D 
and AUV are moving towards each other and are within close proximity of each other (real threat to the 
AUV). 

Figures 9, 10 & 11 show results of the network detection and classification process for several possible routes 
when the moving-object is directed towards the AUV robot within three regions. The process is simulated in 
a real-time cycle with network input considered to be of 250 digits within 25 segments. Each input data 
frame consisted of 10 consecutive sensor readings controlled via the neural networks system using parameter 
identification and derivative error correction capabilities. 

 
Figure 9: Real-time Autonomous Detection Simulation trial, Possibility 1. 

 
Figure 10: Real-time Autonomous Detection Simulation trial, Possibility 2. 

 
Figure 11: Real-time Autonomous Detection, Simulation trial Possibility 3. 

There are two windows shown in Figures 9, 10 & 11, described as follows:  

The first window represents a real-time signature to be captured by controller and the second window 
symbolizes a dimensional sub-space of the neural networks autonomous detection and classification process 
in real time. In every detected segment the percentage of conditional probabilities (confidence factor) has 
been estimated. 
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It is evident that since the adaptive systems are associated with uncertainties, due to the environmental 
situation there may be the possibility of the noise-level-variations within underwater real-life situation. 
Therefore, due to the circumstances, the system should be calibrated and validated if such a case occurs. The 
model here corresponds to three out of numerous possible scenarios to be measured via an autonomous 
detection system. The uses of the best-trained coefficient-weights can be effective to enhance the output 
classification probabilities accuracy (see Figures 4, 5, 6 & 7).  

9.   DISCUSSION AND CONCLUSION 

In this paper an AUV robot autonomous detection system for the purpose of detection and tracking of 
underwater object(s) (at rest) and/ or moving object(s), using a signal detection and classification procedure 
and its practical limitations are discussed. The on-line signal preparation and treatment as well as underlay 
functions of the neural networks are also considered.  

The simulated networks are trained to be able to distinguish and classify object(s) within several regions on 
the basis of the noise-density and its magnitude. The limits of the networks at the time can be due to the 
limited training coefficients data. The system also can be trained and expanded to map more sensitive 
signatures. 

In this work a real-time monitoring simulation methodology is used to investigate the AUV robot’s on-line 
autonomous-control-navigation with applying the safety detection classification process and its applications. 
A simulation case study was addressed and contributes towards further evidence of the self-stabilization of 
the neural-network learning process. Further more the resulting network can be also tested on a wide variety 
of different scenarios with similar sort of noise densities. 
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