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Abstract: Operational prediction of wildfire behaviour requires assessment of the moisture content of 
fine, dead fuels to within an acceptable degree of accuracy. Ideally the methods of assessment should be 
simple enough to implement in most operational settings, including those where computational power is a 
constraining factor. In this paper we compare fine fuel moisture observations relating to two different fuel 
types with predictions derived from a number of fuel moisture models.  

The models considered are: the empirical fuel moisture sub-model of the Western Australian Forest Fire 
Behaviour Tables (“Red Book”); a process-based model which accounts for heat and moisture fluxes within 
surface litter; two simplifications of the process-based model; and a very simple model based on a fuel 
moisture index defined in terms of the difference between air temperature and relative humidity. 

The study utilises two sets of fuel moisture data collected, respectively, in Jarrah (Eucalyptus marginata) and 
Karri (Eucalyptus diversicolor) forests. These two species dominate the forested areas of southwest Western 
Australia. Specifically, the study considers surface fuel moisture content, which is the moisture content of the 
top 10mm of the litter bed, measured daily at 14:00 hours over the period 13 October 1982 – 15 March, 1983. 
The predictive ability of the various models is evaluated through comparison of the model predictions with 
observed fuel moisture contents. While changes in the climate over southwest WA since 1975 mean that the 
data may not be entirely representative of the full range of fine fuel conditions under typical current climatic 
conditions, the data sets do permit exploration of the various model’s performance over the space of relevant 
meteorological variables. 

In the present paper the predictive ability of the fuel moisture models is mainly considered in the context of 
fire management. Of particular interest is the predictive ability of the simpler models at the lower end of the 
fuel moisture continuum, especially at or below the flammability limit (approximately 25%). The specific 
interest in the performance of the simpler models is due to the fact that these models are the most easily 
implemented in a field setting and hence will be of the most direct use to fire-ground personnel. Model 
performance is evaluated through consideration of correlation and error statistics, a simple measure of 
prediction bias and the proportion of model predictions that match observed fuel moisture contents to within 
a specified tolerance. 

It is found that the simple models perform quite well; in fact they outperform the more sophisticated models 
in a number of the evaluation measures. The results of the study have implications for model engineering and 
parsimony that are of particular relevance to the application of fine fuel moisture models during bushfire 
operations.  
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1. INTRODUCTION 

It is well known that the amount of moisture present in fine dead fuels is a key factor affecting fire potential 
and fire behaviour. For example, the McArthur Forest Fire Danger Index (McArthur 1967) varies 
approximately as the inverse square of fine fuel moisture content (Matthews 2009). Assessing the moisture 
content of fine dead fuels to within a reasonable degree of accuracy is therefore an important consideration in 
fire management practices. Indeed, having access to tools that enable field estimation of fuel moisture 
content provides fire-ground personnel with knowledge about the expected rate of fire spread, flame height 
and spotting potential in addition to the general flammability of fuels. The wildfire literature is thus replete 
with various approaches to modelling fuel moisture content (e.g. Sneeuwjagt and Peet 1985; Wittich 2005; 
Matthews 2006).  

Sharples and McRae (2011) considered a very simple model for estimating the moisture content of eucalypt 
litter and compared its predictions to those arising from a process-based model (Matthews 2006) and two of 
its simplifications (Matthews et al. 2010). These studies found that the simple models could provide 
predictions of fuel moisture content that were comparable to those provided by the more sophisticated 
process-based model but at a much lower computational cost. The dataset used in these studies, however, 
only covered a relatively narrow range of conditions and the statistical methods used by Sharples and McRae 
(2011) were not the most robust. This paper therefore extends previous work by considering a more 
comprehensive fuel moisture dataset and a broader suite of fuel moisture models. 

The main aim of the present paper is to identify conditions for which, in the context of fire management, the 
simple models perform to a standard that is acceptible for estimation of fuel moisture content, thereby 
establishing operational thresholds for its use in the field.  

2. MODELS FOR FUEL MOISTURE CONTENT  

2.1. The WA ‘Red Book’ moisture content prediction sub-system 

The forest fire behaviour tables for Western Australia (Sneeuwjagt and Peet 1985; Beck 1995), referred to 
collectively as the ‘Red Book’, are used to predict fire behaviour in forest types that are common throughout 
the southwest of WA. This fire behaviour prediction system contains a sub-system used to estimate surface 
and profile litter moisture contents. For further information on the ‘Red Book’ fuel moisture sub-model the 
reader is referred to Beck (1995) who provides a detailed description of the sub-model and derives a set of 
equations that embodies its content. In the following, FMC predictions arising from the WA ‘Red Book’ sub-
model will be denoted by WARB.  

2.2. The process-based model of Matthews (2006) 

Matthews (2006) introduced and described a model which estimates fuel moisture content by accounting for 
fluxes of energy and water within a litter layer. Heat and water budgets are calculated at five vertically 
spaced nodes using differential and algebraic equations for the litter temperature, temperature of free liquid 
water on the litter surface, air temperature, litter moisture content, amount of liquid water on the litter surface 
and specific humidity. Boundary fluxes are computed from air temperature, wind speed, specific humidity, 
rainfall rate, solar radiation, thermal radiation, soil temperature and soil moisture (Matthews 2006). 
Predictions arising from this model will be denoted as PBM. 

Matthews et al. (2007) also considered PBM estimates using alternate parameter values, which gave the best 
agreement between observations and model predictions. Such estimates will also be considered in the present 
study and will be denoted as PBM*. 

2.3. The process-based model simplifications  

Matthews et al. (2010) considered two simplifications of the process-based model. Firstly, in the absence of 
rain, and with a number of simplifying assumptions, the process-based model can be reduced to a single 
differential equation for the litter moisture content. Predictions arising from this model will be denoted by 
SEM. Secondly, a table of fuel moisture values is built by applying the process-based model to a wide variety 
of hypothetical weather conditions. Fuel moisture predictions are then obtained as the table value whose 
corresponding weather inputs most closely match the observed weather conditions. Predictions arising from 
this model will be denoted by TM. 
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2.4. The fuel moisture index 

The fuel moisture index (FMI) was introduced and discussed by Sharples et al. (2009). It is defined in terms 
of the difference between air temperature T (°C) and relative humidity H (%) as:  

FMI = 10 – 0.25(T – H),                                                               (1) 

FMI is a dimensionless index and should not be considered as giving a direct estimate of fuel moisture 
content. However, Sharples et al. (2009) demonstrated that it was remarkably effective at emulating the 
predictions of a number of empirical models for fuel moisture content. Moreover, as mentioned above, 
Sharples and McRae (2011) demonstrated that FMI delivered estimates of fuel moisture content that 
compared favourably with limited field observations of fuel moisture content. 

To obtain predictions of fuel moisture, FMI is multiplied by a scaling factor with units of %, which is 
obtained empirically. We use the notation FMI* to distinguish the scaled fuel moisture index from the raw 
fuel moisture index FMI. We use α to denote the scale factor, so that: 

             FMI* = α FMI.                                                                        (2) 

The scaling factor α could be derived via a number of methods, but in this study α will be selected so that the 
mean of the FMI* values, calculated over a suitable calibration subset, equals the mean of the corresponding 
observed fuel moisture contents.  

3. DATA AND METHODS 

3.1. Fuel moisture and weather data 

The two sets of fuel moisture observations and their associated weather and boundary flux data described by 
Matthews et al. (2007) are again employed in the present study. However, given the focus on fire 
management applications, only the observations recorded at 14:00 hrs, when fuel moisture contents are 
typically near minimum, are considered. The fuel moisture observations cover the period 13 October 1982 – 
15 March, 1983. In the following T denotes maximum daily temperature (°C), H denotes minimum daily 
relative humidity (%), and m denotes observed fuel moisture content at 14:00 hrs (% of oven-dried weight). 
The Jarrah dataset comprised 154 observations (1 day missed) with 4% ≤ m ≤ 168%, while the Karri dataset 
comprised 153 (2 days missed) with 7% ≤ m ≤ 121%. Maximum daily temperature ranged between 14°C and 
42°C and minimum daily relative humidity ranged between 14% and 80%.  

Given the focus on fire management applications, the main interest was in model performance for fuel 
moisture contents below the flammability limit of approximately 25% (Matthews et al., 2007). Consequently, 
censored versions of the two datasets were used in the analyses. The censored datasets were comprised of all 
fuel moisture contents less than or equal to a threshold fuel moisture content, denoted mT, along with their 
associated variables: T, H, etc. The maximum threshold fuel moisture content considered was mT = 50% 
(approximately twice the flammability limit), while the minimum was mT = 10%.  

3.2. Model performance measures 

The predictive ability of the models over each of the censored datasets is evaluated through calculation of a 
number of correlation and error statistics. Specifically, the linear correlation coefficient (ρ) between 
predicted and observed fuel moisture values; the mean absolute error (MAE); the root-mean-square error 
(RMSE); and a measure of prediction bias (φ) are considered. The prediction bias φ is defined as the 
proportion of data for which the predicted fuel moisture value exceeded the observed value. Ideally a bias of 
φ = 0.5 is desired, though for operational estimation of fuel moisture content in the context of fire 
management it is perhaps better to have φ slightly below 0.5 than slightly above. Under this criterion the 
model will tend to slightly under-predict fuel moisture content, so that on average fire behaviour will be less 
dangerous than would be expected based on estimation of fuel moisture content. 

Given the absence of independent calibration and validation data, the correlation and error statistics relating 
to the FMI* model were estimated using k-fold cross validation (Geisser, 1995). In k-fold cross validation 
the dataset  

                   NimHTD iii ,,1:,,      

 is randomly split into k disjoint subsets D1, D2,…, Dk of approximately equal size. For each i = 1, 2,…, k the 
scale factor α is calibrated using the set D\Di. As mentioned above, α is calibrated so that mean of the fuel 
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moisture content values in D\Di equals the mean of the corresponding FMI* values. The subset Di is then 
used as validation data to allow calculation of the various correlation and error statistics. The k estimates of 
the correlation and error statistics thus obtained are averaged to provide more robust estimates. In this study 
we chose k = 5. The entire 5-fold cross validation process just described was replicated 100 times and the 
results averaged to obtain the correlation and error statistics reported below. 

4. RESULTS 

The correlation and error statistics corresponding to the various threshold fuel moisture contents for the 
Jarrah dataset can be seen in Figure 1. The results corresponding to the PBM and TM values displayed similar 
behaviour to those relating to the PBM* and SEM values, respectively, and so are not shown. Figure 1a 
indicates that when all m ≤ 50% were considered the PBM* model yielded the highest correlation, while if m 
≤ 30% the highest correlations were associated with the FMI* model. Figures 1b and 1c indicate that for m ≤ 
50% the FMI* model yielded the lowest MAE and RMSE values, while if m < 15% the FMI*, PBM* and 
SEM models all yielded similar values of MAE and RMSE. The WARB model had the highest MAE and 
RMSE values for all values of mT. Similarly Figure 1d indicates that the WARB model consistently over-
predicted fuel moisture content, with over 80% of predictions higher than observed values of m, regardless of 
the threshold fuel moisture content. The PBM* tended to slightly under-predict fuel moisture except for low 
values of mT, while FMI* tended to over-predict for mT  > 30% and slightly under-predict for mT  < 20%. The 
SEM model was found to under-predicted fuel moisture content for all values of mT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analogous results for the Karri dataset are depicted in Figure 2. The FMI* model again yields the highest 
correlations for mT < 30% (Figure 2a), and the lowest MAE and RMSE for mT > 20% (Figure 2b and 2c).  
For mT ≤ 20% the SEM model provides the lowest MAE and RMSE values. Surprisingly, the error statistics 
associated with the PBM* model for mT > 20% are quite high with MAE > 5% and RMSE > 12%. As was 

 

 

 

Figure 1. (a) Correlation, (b) mean absolute error, (c) root mean square error, and (d) prediction bias φ 
arising from comparison of FMI* (blue), PBM* (black), SEM (green) and WARB (red) model 

predictions with observed fuel moisture contents in the Jarrah dataset. The grey line in (a) indicates the 
proportion of the 154 data points below the threshold FMC. 
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found in the case of the Jarrah dataset, the WARB model consistently over-predicted fuel moisture, while the 
SEM model consistently under-predicted (Figure 2d). The PBM* and FMI* models both over-predicted 
slightly for mT > 20%. For mT < 20% the FMI* model slightly under-predicted fuel moisture and the PBM* 
displayed an increase in the level of over-prediction. 

The predictive ability of the various models was also assessed by calculating the proportion of model 
predictions that matched the fuel moisture observations to within a specified tolerance. Specifically, 
tolerances of 1%, 2% and 3% were considered. Figure 3 depicts the results for the Jarrah (top three panels) 
and Karri (bottom three panels) fuel types. The results for Jarrah litter indicate that the FMI*, PMB* and 
SEM models provided a similar level of predictive ability for most values of mT and that the WARB model 
performed to a much poorer standard in this respect. Similarly for Karri litter the WARB model performed the 
worst. For the Karri dataset the FMI* performed to a poorer overall standard than the PMB* and SEM 
models, but yielded a similar proportion of predictions within the specified tolerance in the range 20% < mT < 
25%. 

The results discussed above specifically pertaining to fuel moisture content below the flammability limit 
(assumed 25%) are summarized in Table 1. Table 1 contains an additional model denoted FMIa*. This model 
is defined by multiplying the raw FMI values by the average of the two values of the scale factor α obtained 
using cross-validation on the Jarrah and Karri datasets with mT = 25%. This model, defined by 0.981FMI, is 
included in Table 1 to assess the effects of using a single scale factor for both fuel types. The table entries 
indicate that when considering the moisture content of Jarrah litter below the flammability limit, the FMI* 
model performs the best regardless of the statistic used to measure predictive ability. For Karri litter the 
FMI* performed best in terms of correlation, RMSE and predictive bias; the SEM model performed best in 

 

 

 

Figure 2. (a) Correlation, (b) mean absolute error, (c) root mean square error, and (d) prediction bias φ 
arising from comparison of FMI* (blue), PBM* (black), SEM (green) and WARB (red) model 

predictions with observed fuel moisture contents in the Karri dataset. The grey line in panel (a) indicates 
the proportion of the 153 data points below the threshold FMC. 
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terms of predicting to within 1% or 2% of the observed values; while the FMIa* model performed best in 
terms of MAE and predicting to within 3% of the observed values. 

5. DISCUSSION AND CONCLUSIONS 

The performance of a number of simple models for the moisture content of litter was evaluated by 
comparison with predictions from a process-based model and with observations of fuel moisture content in 
two WA forest types. Overall, the simple indices were found to perform the best, with the most simple FMI* 

 

 

 

Figure 3. Fraction of the respective model predictions within 1%, 2% and 3%, of the observed fuel 
moisture contents. The top three panels relate to the Jarrah dataset, the bottom three panels to the Karri 

dataset.
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Jarrah  Jarrah  Jarrah 

Karri  Karri  Karri 

Fuel Type Model ρ MAE (%) RMSE (%) φ Within 1% Within 2% Within 3% 

Jarrah PBM* 0.606 4.105 8.026 0.414 0.266 0.535 0.703 

 SEM 0.722 3.252 4.414 0.164 0.234 0.403 0.625 

 WARB 0.645 8.578 11.854 0.875 0.141 0.217 0.320 

 FMI* 0.761 2.315 2.979 0.505 0.272 0.540 0.729 

 FMIa* 0.761 2.934 3.721 0.773 0.242 0.430 0.563 

Karri PBM* 0.573 10.732 21.488 0.549 0.217 0.471 0.549 

 SEM 0.556 4.005 5.635 0.167 0.283 0.480 0.569 

 WARB 0.579 8.578 11.640 0.824 0.142 0.176 0.255 

 FMI* 0.585 3.754 4.842 0.538 0.153 0.379 0.524 

 FMIa* 0.583 3.554 4.898 0.353 0.235 0.412 0.578 
 

Table 1. Statistics arising from analyses of the various model predictions corresponding to observed fuel 
moisture contents m ≤ 25%. Note that the model denoted FMIa* corresponds to the FMI with a scale factor 
of α = 0.981, which is the average of the values of α derived using cross-validation on the Jarrah and Karri 
datasets with mT = 25%. Entries in bold identify the model exhibiting the best performance in terms of the 

relevant statistic. 
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model providing the best results overall. The PBM and PBM* models tended to over-predict fuel moisture 
content to a significant degree in many instances thus resulting in large values for the error statistics at all but 
the very lowest threshold fuel moisture contents considered. However, even under these conditions the error 
statistics for the PBM and PBM* models were not significantly different to those for the simpler SEM and 
FMI* models. The WARB model performed the worst overall with consistently large prediction errors and 
large positive prediction bias. 

The FMI*, SEM and TM models tend to saturate as fuel moisture increases and so there is less capacity for 
the huge over-predictions seen with the PBM and WARB models. This implies that these simpler models 
would perform poorly in a contingency table (‘burn’ or ‘no burn’) analysis. However, given that the interest 
is in evaluating the utility of the simpler models in the context of fire management this aspect of their 
performance does not constitute a significant shortcoming. In fact the results suggest that in the context of 
fire management, where the conditions encountered are typically at the drier end of the fuel moisture 
continuum, the FMI* model provides the best guidance overall.  

The FMI* model does require calibration against historical fuel moisture data before it can be used to provide 
direct estimates of fuel moisture content but this could perhaps be accommodated by an appropriate survey of 
fuel moisture in a particular area where use of the index is proposed and the production of simple conversion 
tables or graphs that incorporate the appropriate value of the scale factor α for each dominant fuel type. The 
values of α varied only a small amount with mT for each of the data sets: for the Jarrah data set α varied 
linearly with mT, from α = 1.007 at mT = 50% to α = 0.757 at mT = 10%; for the Karri data set α varied 
approximately linearly with mT, from α = 1.404 at mT = 50% to α = 1.076 at mT = 10%. The reason for the 
different values of the scale factor obtained in the two forest types is unclear (different values were also 
obtained by Sharples and McRae (2011)), but presumably is related to the way the different fuel types 
respond to changes in environmental conditions. This will be investigated more thoroughly in future work. 

The fact that very simple models for fuel moisture content can consistently outperform more complex models 
again raises the point about parsimony of fuel moisture models. This point is particularly relevant for models 
that are intended to provide operational guidance on a fire-ground where computational resources are limited. 
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